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A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by
localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar
(length-independent) conic geometry allows us to match the singular heat source at the tip to the singular
radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and
the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling,
which depends only on a single dimensionless parameter Z, collapses the measured conductance data and
computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed
numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.
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Ohmic heating in a nanopore has recently been put forth
as a means to rapidly establish stable thermal hot spots,
with superheated temperatures [1,2]. Such hot spots can be
indirectly detected by a stable increase in the ionic current
due to the decreased viscosity of the heated water [3]. We
extend this concept to slender conic nanopores, where the
focused electric field can reduce the longitudinal dimension
of the hot spot to nanoscales at the tips of macroscopic (cm-
long) pores. Moreover, the self-similar conic geometry
allows us to develop a universal size-independent theory for
the conductance enhancement and the hot-spot temper-
ature, location, and dimension. With the smaller longi-
tudinal dimensions and universal scaling of these conic
nanopore hot spots, nanoscale phenomena such as single-
molecule thermophoresis [4], single-biomolecule binding
kinetics and thermodynamics, and single-bubble nucleation
[5,6] can be studied in a precisely controlled nanoscale
location with distinct ion current signatures.
Because of field focusing, the electric field E blows up

towards the tip in a conic nanopore as (R−2), where R is the
local cross-section radius of the cone [see Fig. 1(b)]; hence,
the Ohmic heating rate per unit volume, which scales as
(E2), blows up as (R−4). The external temperature profile
for a perfect cylinder, however, blows up as ln r in the radial
direction and would be responsible for an R-independent
heat loss rate per unit length along the cylinder. This seems
to suggest that a steady temperature profile with a balance
between heat generation and heat loss cannot be estab-
lished. However, as shown in our analysis, proper account-
ing of the far-field external longitudinal flux that eliminates
the singular ln r dependence for an infinitely long cylinder
[7] is able to produce the desirable (R−2) scaling for heat
loss per unit length. Consequently, the stable steady-state
temperature profile that results from a balance between two
nearly singular fluxes at the tip of a cone is very

mathematically similar to the balance of singular azimuthal
capillary forces and electrical Maxwell or Coulombic
forces for dc [8] and ac [9] to establish robust interfacial
cones. All share the conic geometry responsible for
singular electric fields and singular forces or fluxes, and
all produce self-similar universal scaling results that are
independent of the actual length of the cone. However,

FIG. 1. (a) Current voltage characteristic curves for the polymer
nanopore. The rectification ratio for all data points is below 1.05.
(b) Schematic of temperature profile in the z direction inside a
cone with different but self-similar temperature profiles in the r
direction at two positions on the cone surface.
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unlike the interfacial cones, this thermal analysis involves
matched asymptotics instead of local analysis, though the
outer length scale does not enter explicitly but only through
the angle of the cone due to geometric self-similarity. We
use the theory, which depends on only a single dimension-
less parameter Z, to obtain scaling laws for our computed
steady-state temperature profile within the conic nanopore
and our conductance enhancement data from experiments.
The collapsed experimental and numerical data then offer
very precise estimates of the hot-spot features.
Our experiments were done with three kinds of conic

nanopores: single polyethylene terephthalate (PET) poly-
mer pores from ion-track irradiation and asymmetric
etching [10], silica nanopipettes with a submicron tip
radius, and patch pipettes with a 1–3 μm tip radius (for
cellular patch-clamp experiments) from laser-assisted
pulling. SEM and conductance measurement at room
temperature shows a typical tip radius Rt of 5 nm for
the polymer conic pores, 100 nm for the silica nanopipettes,
and 500 nm for patch pipettes. The inner half angle is
2.6°� 0.15° for our polymer conic pores, 2.5°� 0.3° for
our nanopipettes and 4.5°� 0.8° for our patch pipettes. We
reduce the surface charge of the silica pipettes with
functionalization by N-(3-Triethoxysilylpropyl)glucona-
mide and validated their low surface charge with
ion-current rectification measurements [11]. Fabrication
procedures and characterization details are in the
Supplemental Material [10,12–14].
Figure 1(a) shows our measured current-voltage char-

acteristic curve of a polymer conic nanopore filled with
KCl solutions of different concentrations. A roughly
quadratic increase in current is observed with respect to
voltage for both biases, and the rectification ratios for all
data points of opposite biases are below 1.05. Because
surface charge causes higher rectification as the voltage
increases [11], the conductance enhancement at higher
voltages for both biases must be due to temperature
increase inside the pore caused by Ohmic heating. Note
that, at the same voltage, conductance enhancement is
more significant for electrolytes with higher ionic
strength, indicating a higher temperature increase inside
the pore. The conductance enhancement is more readily
observed if it is normalized by conductance at low voltage
when the Ohmic heating effect is negligible. The normal-
ized conductance versus voltage for the polymer nano-
pore, nanopipette, and patch pipette are plotted in
Fig. 2(a).
For a slender cone with a half-cone angle of θ, we

assume, and check a posteriori, that heat generation in each
cone element is balanced by transverse heat loss through
side walls. Longitudinal heat flux through the tip will be
shown to be smaller than the transverse loss through the
side walls by a factor of tan θ ≪ 1, which is small for a
slender cone. Based on Gauss’s law, the electric field inside
the cone is equal to Vzt=z2, where zt is the distance from

the extrapolated cone apexO to nanopore tip [see Fig. 1(b)]
and V is the applied voltage [11]. The heat-generation rate
per unit volume is given by σE2, where σ is the conductivity
of electrolyte and E is the local electric field. The
electrolyte is at high ionic strength such that the Debye
length is much shorter than the nanopore radius.
Consequently, the conductivity is uniform within the
nanopore. As such, the temperature gradient in the polar
direction on the cone surface can be obtained by relating
the heat generation per unit length to the heat loss per unit
length, ð∂T=∂rÞjr¼zε − ½ðtan θσV2z2t Þ=2k�ð1=z3Þ, where
ε ¼ tan θ is a measure of the slenderness and k is the
thermal conductivity outside the cone. The thermal con-
ductivity k for the polymer nanopore is for PET
k ¼ 0.15 Wm−1 K−1, for water k ¼ 0.6 Wm−1 K−1, and
for silica k ¼ 1.3Wm−1K−1 [15]. For simplicity, all T
represent local temperature difference with respect to the
room temperature. We have also neglected electro-osmotic
flow or any convection effects on intrapore heat transfer.
We have silanized our silica nanopores to reduce electro-
osmotic flow, but residue surface charge could still exist on
the surface. Some reports [16] have shown electro-osmotic
velocity in silica conic nanopores as high as 0.3 m=s
because of field focusing. However, even with such a high
velocity, we estimate our thermal Peclet number for water,
UR=α, to be as low as 0.1 near the tip; hence, convective
contribution to heat transfer within the conic nanopore is
negligible.
Outside the cone, but still within an inner region close

to the cone, we study the Laplace equation with the
stretched variable ρ ¼ r=εzt so that the polar coordinate
on the cone surface is fixed to be z̄, where z̄ ¼ z=zt.
Using zt, the longitudinal distance of the tip from the
cone apex, as the longitudinal length scale yields a
stretched Laplace equation for thermal flux ð1=ρÞð∂=∂ρÞ×
½ρð∂T=∂ρÞ� þ ε2½ð∂2TÞ=ð∂z̄2Þ� ¼ 0. The leading-order
solution without longitudinal heat flux through the solution
is then

Tðρ; z̄Þ ∼ Tðz̄Þ þQðz̄Þ
�
ln
ρ

z̄

�
; ρ > z̄; ð1Þ

where Tðz̄Þ is the unknown temperature on the cone surface.
The ln ρ portion arises from the straight cylinder limit
(ε → 0). The flux on the cone surface is determined by this
term, and balancing with the previously determined Ohmic
heat-generation rate at every longitudinal position z allows
us to determine the coefficient Qðz̄Þ. εztð∂T=∂rÞjr¼zε ¼
ð∂T=∂ρÞjρ¼z̄ ¼ ½Qðz̄Þ=z̄�. Thus, the line source strength
with dimension of temperature isQðz̄Þ ¼ −TOhm=z̄2, where
TOhm ¼ tan2θσV2=2k is the characteristic temperature rise
from Ohmic heating at the tip. It corresponds to a virtual
sphere at the tip with higher heat loss than the true slender
cone. The temperature rise TOhm is, hence, an underestimate
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of the true tip temperature that needs to be corrected with a
slender-body-matched asymptotic theory.
Away from the cone, the far-field temperature can be

described by the integral formulation with a convolution
integral with the Green’s function (single-charge funda-
mental solution) of the Laplace equation. In the original
coordinates, this integral solution that satisfies the far-field
condition Tðr2 þ z2 → ∞Þ ¼ 0 is

Tðr; zÞ ¼ −
Z

∞

zt

qðsÞds
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − sÞ2

p :

In the limit of vanishing r, where the cone surface is, this
integral has a simple pole at s ¼ z and we can, hence,
approximate it by choosing a smaller interval of integration
about the pole, r ≪ δ ≪ zt, such that

Z
∞

zt

qðsÞds
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − sÞ2

p ∼
Z

zþδ

z−δ

qðsÞds
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz − sÞ2

p

¼
Z

δ=r

−δ=r

qðzþ rtÞdt
4π

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p

after a change of variable s ¼ zþ rt. Expanding about
r ¼ 0 and respecting the relative scaling between z and r,
we obtain

Tðr; zÞ ∼ −
qðzÞ
2π

Z
δ=r

0

dtffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p ∼ −
qðzÞ
2π

lnð2δ=rÞ: ð2Þ

The finite temperature of the integral solution of a finite
cone approaches an asymptote at r ¼ 0 that has the singular
limits (at both vanishing r and infinite r) of an infinite
cylinder, and z is of the order specified by δ. This limiting
asymptote is of the form in Eq. (1) and, hence, allows
matching between the two solutions. One can use the
intermediate coordinate of Hinch [7] to match Eqs. (1) and
(2) and relate qðzÞ=2π to Qðz̄Þ in the intermediate region at
the surface of the tip where r ¼ εz ∼ εzt. It is, however,
quite obvious by inspection that Tðz̄Þ ∼Qðz̄Þ ln ε and

Tðz̄Þ ∼ TH

z̄2
¼ − lnðtan θÞTOhm

z̄2
: ð3Þ

Through matching, the slender-body heat loss to the bulk
has introduced a − ln ε ¼ − lnðtan θÞ correction to the
original characteristic temperature rise TOhm, to obtain a
new temperature rise TH with proper respect to the nearly
cylindrical geometry and the ln r fundamental solution.
Although there exists a finite normal gradient at the cone

surface ð∂T=∂rÞjr¼εz, the gradient resides in a thin boun-
dary layer of thickness εR and the temperature is uniform to
leading order within most of the local cross section of
radius R. The temperature drop across this thin boundary
layer is hence small (of order R) compared to the bulk
temperature, and one can use the value on the cone surface

from Eq. (3) to approximate the temperature within the
conic pore.
The conductivity has a temperature dependence of

σ ¼ ½mTðzÞ þ 1�σ0, where the conductivity expansion
coefficient for aqueous electrolyte is m ¼ 0.02K−1 ¼
1=Tm [17] for water and σ0 has a linear concentration
dependence. The normalized conductance of the cone can
be derived from the integration of the equation
κ=κ0 ¼

R
∞
1 ð1=σ0Þz̄2dz̄=

R
∞
1 ð1=σz̄2Þdz̄. When TH=Tm is

small, such that the conductivity does not increase signifi-
cantly, the expression can be simplified as

κ

κ0
¼ 1þ TH

3Tm
¼ 1þ Z; ð4Þ

where Z ¼ − lnðtan θÞmtan2θσV2=6k. Figure 2(a) shows
experimental data of normalized conductance for the polymer
nanopore, nanopipette, and patch pipette, showing varying
degrees of enhancement when measured at the same voltage.
Figure 2(b) shows data to collapse with Eq. (4).
One of the most important results from the slender-body

theory is that it provides a way to estimate the temperature
inside the cone from normalized conductance even with an
unknown cone angle and thermal conductivity. Based on
Eqs. (3) and (4), the temperature rise normalized by
Tm=ðz̄Þ2 for any longitudinal z coordinate has a universal
linear scaling relationship with respect to the normalized
conductance, with a universal slope of 3. The matched
asymptotic analysis breaks down at some neighborhoods of
the conic tip, where a significant heat loss in the longi-
tudinal direction that is not captured in the current slender-
body theory dominates. The temperature, hence, does not
increase monotonically towards the tip z̄ ¼ 1, as predicted
by Eq. (3), but exhibits a maximum at some distance from
the tip. Nonetheless, due to the self-similarity of the conic
geometry and the universal validity of the focused Ohmic
heating scaling, we expect the hot-spot location to be
universal, and the normalized hot-spot temperature to
exhibit the same universal scaling of 3 with respect to
the normalized conductance.
We have numerically solved the steady-state inhomo-

geneous heat equation with an Ohmic heating source for
polymer nanopore and nanopipette geometry of different
cone angles using COMSOL MULTIPHYSICS v3.5a. The
temperature dependence of the electrical conductivity of
the electrolyte and all physical parameters used in the
simulation are the same as those used in the collapse in
Fig. 2(b). The simulated data are also collapsed by Eq. (4).
The normalized conductances are plotted against the
maximum temperature rise normalized by Tm=ðz̄Þ2 for
various conic geometries in Fig. 3. The universal slope
is found to be equal to 3 when z̄ ¼ 1.2, which agrees well
with the actual position of the maximum temperature
increase from the simulation results. This empirically

PRL 117, 134301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

134301-3



established universality then allows us to predict the hot-
spot temperature from Eq. (3) with z̄ ¼ 1.2.
That the hot-spot length is of order zt, the longitudinal

distance of the tip from the cone apex, also allows us to
validate our negligence of the longitudinal heat flux through
the tip. Using the point-source solution of the Laplace
equation, the radial heat flux density from the tip scales as
kðRt=r2Þ, where r is the spherical radial coordinate from the

tip and Rt is the tip radius. As such, the total longitudinal
thermal diffusive flux into the solution scales as πkRt=2.
Using the line source solution in Eq. (2), the transverse heat
flux through the wall scales as kð1=rÞ, where r here is the
cylindrical radial coordinate transverse to the cone, and
the total transverse flux out of the wall scales as 2πkzt,
using the confirmed longitudinal length scale of the
hot spot from Fig. 4. Because Rt=zt ¼ tan θ ¼ ε ≪ 1

FIG. 2. (a) Measured conductance of a single conic nanopore ion-track PET membrane, charge-free nanopipette, and patch pipette,
normalized by the zero-voltage conductance of each experiment, as a function of voltage. A quadratic increase with respect to voltage is
observed, in violation of Ohmic law with constant conductance. (b) Membrane, nanopipette, and patch pipette data collapsed by the
scaling theory into a linear correlation with respect to a normalization factor that contains cone angle θ (2.6°, 2.5° and 4.5° degrees for
polymer nanopore, nanopipettes, and patch pipette, respectively), k ¼ 0.15 and 0.6 Wm−1 K−1 for the PET membrane pore and the
silica pipettes, coefficient of temperature-dependent electrical conductivitym, thermal conductivity outside the cone k, conductivity σ at
indicated ionic strength at room temperature, and voltage V. Insets show cavitation in both the nanopore membrane and patch pipette at
the corresponding voltages. Cavitating bubbles are first observed within the patch pipette at some distance from the tip, as shown in the
second inset, but will eventually grow sufficiently to exit the pipette, as is observed at the membrane surface.

FIG. 3. Collapse of simulation result of highest temperature vs
normalized conductance for the nanopipette and nanopore with
voltages ranging from 2V to 25V. Rt indicates tip radius, which
varies by a factor of 20 from polymer nanopores to nanopipettes.
C indicates molarity of KCl. Contour plots of the temperature
near the tip of the nanopipette and polymer nanopore at 24V are
shown in the inset. Room temperature is 25 °C.

FIG. 4. Simulation results of the cutoff position for different
voltages and cone geometry using a cutoff temperature rise of
15 °C. The theory that does not account for varying conductivity
inside the cone is only valid at low voltages when conductivity
variation throughout the cone is small. Once conductivity variation
is considered, the theory is valid at both high and low temperatures.
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for a slender cone, the longitudinal flux into the solution
is negligible compared to the radial flux through the
side wall.
After defining an arbitrary cutoff temperature rise Tc ¼

15 °C to estimate the dimension of the hot spot, we find in
Fig. 4 that the theory estimates the lower temperatures well
at low TH, but breaks down at high voltages or large TH.
This error is due to the omission of the nonlinear conduc-
tivity variation in the Ohmic heating of our theory. A next-
order correction (in the conductivity increase Z) can be
made with E ¼ ½Vztð1þ ZÞ�=z2½1þ TðzÞ=Tm�, where
ð1þ ZÞ accounts for the overall conductivity increase
and ½1þ Tðz̄Þ=Tm� balances the current along the cone
with varying local electrical conductivity. Using the same
asymptotic matching, the expression for the temperature
becomes: TðzÞ ¼ Tm½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ ZÞ2TH=Tm þ z̄2

p
=2z̄ − 1=2�,

which represents a higher-order correction to Eq. (3). The
position z̄c of the cutoff temperature Tc where Tðz̄Þ ¼ Tc is
then z̄c ¼ ð1þ ZÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ Tc=TmÞTc=TH

p
. This higher-

order correction collapses the large voltage simulation
results in Fig. 4 and offers an estimate of the
hot-spot dimension. Using the same cutoff temperature
rise of 15 °C, at low Z ðTH=Tm < 1Þ, the thermal
hot-spot dimension is quantitatively less than zt, or less
than 100 nm for the membrane nanopore and 2 μm for the
nanopipette.

We acknowledge that Z. P. was supported by a China
Scholarship Council fellowship and that C.W. was sup-
ported by an IBM grant. We offer special thanks to Dr.
Benxin Jing and Dr. Satyajyoti Senapati for advice on silica
surface salinization. Z. P., C. W., and H. C. C. are supported
by NIH IMAT Grant No. 1R21CA206904.

*Corresponding author.
hchang@nd.edu

[1] V. Viasnoff, U. Bockelmann, A. Meller, H. Isambert, L.
Laufer, and Y. Tsori, Appl. Phys. Lett. 96, 163701 (2010).

[2] G. Nagashima, E. V. Levine, D. P. Hoogerheide, M. M.
Burns, and J. A. Golovchenko, Phys. Rev. Lett. 113,
024506 (2014).

[3] C. Chimerel, L. Movileanu, S. Pezeshki, M. Winterhalter,
and U. Kleinekathöfer, Eur. Biophys. J. 38, 121 (2008).

[4] S. Duhr and D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103,
19678 (2006).

[5] V. Kotaidis, C. Dahmen, G. Von Plessen, F. Springer, and A.
Plech, J. Chem. Phys. 124, 184702 (2006).

[6] E. Zwaan, S. Le Gac, K. Tsuji, and C.-D. Ohl, Phys. Rev.
Lett. 98, 254501 (2007).

[7] E. J. Hinch, Perturbation Methods (Cambridge University
Press, Cambridge, England, 1991).

[8] G. I. Taylor, Proc. R. Soc. A 280, 383 (1964).
[9] N. Chetwani, S. Maheshwari, and H.-C. Chang, Phys. Rev.

Lett. 101, 204501 (2008).
[10] C. Wang, Q. Fu, X. Wang, D. Kong, Q. Sheng, Y. Wang, Q.

Chen, and J. Xue, Anal. Chem. 87, 8227 (2015).
[11] J. Cervera, B. Schiedt, R. Neumann, S. Mafé, and P.

Ramírez, J. Chem. Phys. 124, 104706 (2006).
[12] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.117.134301 for fabri-
cation details, which includes Refs. [10,13–14].

[13] P. Scopece, L. A. Baker, P. Ugo, and C. R. Martin, Nano-
technology 17, 3951 (2006).

[14] S. Karim, W. Ensinger, S. Mujahid, K. Maaz, and E. Khan,
Radiation Measurements 44, 779 (2009).

[15] M. J. Moran et al., The CRC Handbook of Thermal
Engineering (CRC Press LLC, Boca Raton, FL, 2000).

[16] N. Laohakunakorn, V. V. Thacker, M. Muthukumar, and
U. F. Keyser, Nano Lett. 15, 695 (2015).

[17] J. Johnston, J. Am. Chem. Soc. 31, 1010 (1909).

PRL 117, 134301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

134301-5

http://dx.doi.org/10.1063/1.3399315
http://dx.doi.org/10.1103/PhysRevLett.113.024506
http://dx.doi.org/10.1103/PhysRevLett.113.024506
http://dx.doi.org/10.1007/s00249-008-0366-0
http://dx.doi.org/10.1073/pnas.0603873103
http://dx.doi.org/10.1073/pnas.0603873103
http://dx.doi.org/10.1063/1.2187476
http://dx.doi.org/10.1103/PhysRevLett.98.254501
http://dx.doi.org/10.1103/PhysRevLett.98.254501
http://dx.doi.org/10.1098/rspa.1964.0151
http://dx.doi.org/10.1103/PhysRevLett.101.204501
http://dx.doi.org/10.1103/PhysRevLett.101.204501
http://dx.doi.org/10.1021/acs.analchem.5b01501
http://dx.doi.org/10.1063/1.2179797
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.134301
http://dx.doi.org/10.1088/0957-4484/17/15/057
http://dx.doi.org/10.1088/0957-4484/17/15/057
http://dx.doi.org/10.1016/j.radmeas.2009.10.022
http://dx.doi.org/10.1021/nl504237k
http://dx.doi.org/10.1021/ja01939a003

