UNIVERSITY OF NOTRE DAME
 DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi
AME-562
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email:atassi.1@nd.edu

Sectionally Analytic Functions-Plemelj Formulas

Definition: Let C be a closed contour in the plane of the complex variable z. The domain within the contour C is called the interior domain and is denoted D_{+}. The complementary domain to D_{+}and C is called the exterior domain and is denoted D_{-}.

Theorem : If $f(z)$ is analytic in D_{+}and continuous in D_{+}and C, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(\tau)}{\tau-z} d \tau= \begin{cases}f(z) & \text { if } z \in D_{+} \\ \frac{1}{2} f(z) & \text { if } z \in C \\ 0 & \text { if } z \in D_{-}\end{cases}
$$

If, however, $f(z)$ is analytic in D_{-}and continuous in D_{-}and C , then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(\tau)}{\tau-z} d \tau= \begin{cases}f(\infty) & \text { if } z \in D_{+} \\ f(\infty)-\frac{1}{2} f(z) & \text { if } z \in C \\ f(\infty)-f(z) & \text { if } z \in D_{-}\end{cases}
$$

The integration along C is carried in the positive direction(counterclockwise). Note that when $z \in C$, the integral exists only in the sense of the Cauchy principal value.

Theorem : If $\varphi(t) \in \mathcal{H}$ along C, then the function $\Phi(z)$ defined by the Cauchy integral

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{C} \frac{\varphi(\tau)}{\tau-z} d \tau
$$

is analytic in the complex plane except along C where it has a discontinuity

$$
\Phi_{+}(t)-\Phi_{-}(t)=\varphi(t)
$$

and,

$$
\Phi_{+}(t)+\Phi_{-}(t)=\frac{1}{\pi i} \int_{C} \frac{\varphi(\tau)}{\tau-t} d \tau
$$

where $\Phi_{+}(t)$ is the limit of $\Phi(z)$ as $z \rightarrow t$ along C while remaining in D_{+}, and and $\Phi_{-}(t)$ is the limit of $\Phi(z)$ as $z \rightarrow t$ along C while remaining in D_{-}. Thus, we have

$$
\Phi_{ \pm}(t)= \pm \frac{1}{2} \varphi(t)+\frac{1}{2 \pi i} \int_{C} \frac{\varphi(\tau)}{\tau-t} d \tau
$$

The integrals are, of course, defined as Cauchy principal values.

Theorem : The functional equation

$$
\Phi_{+}(t)-\Phi_{-}(t)=\varphi(\tau)
$$

has the particular solution which vanishes at ∞

$$
\Phi(z)=\frac{1}{2 \pi i} \int_{C} \frac{\varphi(\tau)}{\tau-z} d \tau
$$

