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Sectionally Analytic Functions-Plemelj Formulas

Definition: Let C be a closed contour in the plane of the complex variable z. The domain
within the contour C is called the interior domain and is denoted D;. The complementary
domain to D4 and C is called the exterior domain and is denoted D_.

Theorem : If f(z) is analytic in D4 and continuous in Dy and C, then
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If, however, f(z) is analytic in D_ and continuous in D_ and C, then
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The integration along C is carried in the positive direction(counterclockwise). Note that when
z € C, the integral exists only in the sense of the Cauchy principal value.

Theorem : If ¢(t) € H along C, then the function ®(z) defined by the Cauchy integral
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is analytic in the complex plane except along C where it has a discontinuity

and,
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where &, (t) is the limit of ®(z) as z — ¢ along C while remaining in D, and and ®_(¢) is
the limit of ®(z) as z — ¢ along C while remaining in D_. Thus, we have
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The integrals are, of course, defined as Cauchy principal values.

Theorem : The functional equation
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has the particular solution which vanishes at co
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