UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi
AME-562
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email:atassi.1@nd.edu

One Dimensional Piston Problem

1 Governing equations

Consider a one-dimensional duct aligned with the x-axis. To the right of the piston, the duct is full with a gas at rest. At time $\mathrm{t}=0$ the piston starts moving with a velocity $u_{p}(t)$. Let ρ, u, and s describe the gas density, velocity and entropy. We assume an isentropic process and therefore the gas properties are governed by the two first order partial differential equations:

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0 \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{c^{2}}{\rho} \frac{\partial \rho}{\partial x}=0 \tag{2}
\end{array}
$$

where c is the speed of sound. We assume the piston position is given by the function $X(t)$. The initial conditions are

$$
\begin{equation*}
t \leq 0, \quad u=0 \quad, c=c_{0} \tag{3}
\end{equation*}
$$

and the boundary conditions are,

$$
\begin{equation*}
t>0, \quad u(X(t), t)=u_{p}=\dot{X}(t) \tag{4}
\end{equation*}
$$

2 Characteristics Equations

$$
\begin{align*}
I_{+}: \frac{d x}{d t} & =u+c C_{+} \tag{5}\\
I_{-}: \frac{d x}{d t} & =u-c C_{-} \tag{6}\\
I I_{+}: \quad d u+\frac{c}{\rho} d \rho & =0 \text { on } C_{+} \tag{7}\\
I I_{-}: \quad d u-\frac{c}{\rho} d \rho & =0 \text { on } C_{+} \tag{8}
\end{align*}
$$

Note that since the gas is isentropic, $(\gamma-1) \frac{d \rho}{\rho}=2 \frac{d c}{c}$. Therefore (7-8) can be rewritten as

$$
\begin{array}{ll}
I I_{+}: & d u+\frac{2}{\gamma-1} d c=0 \text { on } C_{+} \\
I I_{-}: & d u-\frac{2}{\gamma-1} d c=0 \text { on } C_{-} \tag{10}
\end{array}
$$

Integrating 9 along C_{+}and 10 along C_{-}, gives

$$
\begin{array}{ll}
I I_{+}: & u+\frac{2}{\gamma-1} c=r^{*}, \\
\text { on } C_{+} \tag{12}\\
I I_{-}: & u-\frac{2}{\gamma-1} c=s^{*},
\end{array} \text { on } C_{-}
$$

where r^{*} and s^{*} constant along C_{+}and C_{-}, respectively. r^{*} and s^{*} are known as the Riemann invariants.

3 Simple Waves

If one of the Riemann invariants is constant throughout the domain, the solution corresponds to a wave motion in only one direction. In the present problem,

$$
\begin{align*}
& u=\frac{r^{*}+s^{*}}{2} \tag{13}\\
& c=\frac{\gamma-1}{2}\left(r^{*}-s^{*}\right) \tag{14}
\end{align*}
$$

In general, the value of u and c will depend on the two parameters $\left(r^{*}, c^{*}\right)$ indicating two waves where the information is propagating along the two families of characteristics. On the other hand, if $s^{*}=$ constant everywhere, then u and c receive information from the characteristic C_{+}only through the variation of r^{*} from one characteristic to another. Problems reduced to simple waves are much simpler to solve.

3.1 Proposition

The solution in a region adjacent to a constant state is always a simple wave solution.

4 Solution

We construct the solution assuming no breaking will occur. This will be examined later.

4.1 Steady State Region: $t>0, x>c_{0} t$

Along C_{+}originating from the positive x-axis,

$$
\begin{equation*}
u+\frac{2}{\gamma-1} c=\frac{2}{\gamma-1} c_{0} \tag{15}
\end{equation*}
$$

Similarly along C_{-}originating from the positive x -axis,

$$
\begin{equation*}
u-\frac{2}{\gamma-1} c=-\frac{2}{\gamma-1} c_{0} \tag{16}
\end{equation*}
$$

These equations imply that for the region $x>c_{0} t$, we have

$$
\begin{equation*}
u=0 \quad c=c_{0} \tag{17}
\end{equation*}
$$

The charcteristics in this region are straight lines whose equations are

$$
\begin{gather*}
x-x_{0}^{+}=c_{0} t \quad \text { along } \quad C_{+} \tag{18}\\
x-x_{0}^{-}=-c_{0} t \quad \text { along } \quad C_{-}, \tag{19}
\end{gather*}
$$

where x_{0}^{+}and x_{0}^{-}are the points of their intersection with the x -axis. Note in this region there no waves and the gas remain quiescent.

4.2 Simple Wave Solution

All characteristics C_{-}will originate from the positive x-axis. Thus they have the same Riemann invariant as (16) shows. This means that we have the following relationship

$$
\begin{equation*}
u=\frac{2}{\gamma-1}\left(c-c_{0}\right) \tag{20}
\end{equation*}
$$

Equation 20 is valid everywhere in the field, assuming no shocks. Substituting 20 into 15 show that both u and c are constant along C_{+}originating from the piston surface. Hence, we have

$$
\begin{align*}
u & =u_{p}=\dot{X(t)} \tag{21}\\
c & =c_{p} \tag{22}
\end{align*}
$$

Since both u and c are constant along C_{+}we can integrate 5 ,

$$
\begin{equation*}
x=X(\tau)+\left(u_{p}+c_{p}\right)(t-\tau) \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
x=X(\tau)+\left(c_{0}+\frac{\gamma+1}{2} \dot{X}(\tau)\right)(t-\tau) \tag{24}
\end{equation*}
$$

5 Piston Moving with a Constant Speed (-V)

Substituting \dot{X} by $-V$, we get

$$
\begin{align*}
x & =-V t+\left(c_{0}-\frac{\gamma+1}{2} V\right)(t-\tau) \tag{25}\\
u & =-V \tag{26}\\
c & =c_{0}-\frac{\gamma-1}{2} V \tag{27}
\end{align*}
$$

In the fan region defined by

$$
\left(c_{0}-\frac{\gamma+1}{2} V\right) t<x<t c_{0}
$$

we have

$$
\begin{equation*}
\frac{d x}{d t}=u+c=c_{0}+\frac{\gamma+1}{2} u \tag{28}
\end{equation*}
$$

Moreover along $C_{+}, c+\frac{\gamma-1}{2} u=$ constant. Therefore u and c are constant. As a result,

$$
\begin{equation*}
x=\left(c_{0}+\frac{\gamma+1}{2} u\right) t \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
u & =\frac{2}{\gamma+1}\left(\frac{x}{t}-c_{0}\right) \tag{30}\\
c & =\frac{2}{\gamma+1} c_{0}+\frac{\gamma-1}{\gamma+1} \frac{x}{t} \tag{31}
\end{align*}
$$

6 Breaking

It is easy to show that breaking will occur if $\ddot{X}<0$.

