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Linear Operators and Linear Equations

1 Linear Equations

Let E be an n-dimensional space and let ~x = {x1, x2, · · · , xn} ∈ E. We define the inner
product

(~x, ~y) =
i=n∑

i=1

xiyi. (1)

and the norm
||~x|| = (~x, ~x)

1
2 . (2)

A linear operator L on E is denoted L: E → F ⊆ E. In linear algebra, the operator
can be represented by a matrix A. An n×n matrix A can be represented by its column
vectors, A = {c1, c2, · · · , cn} or by its row vectors A = {r1, r2, · · · , rn}t. The rank of A
is the number of independent column vectors or the number of independent row vectors.
If the rank of A is < n, A is said to be singular.

A system of n linear equations can be written as

A~x = ~b. (3)

Or
i=n∑

i=1

xi~ci = ~b. (4)

1.1 A is of rank n

The column vectors {~ci} are independent and span E. The associated homogenous
equation, A~x = 0, has no nontrivial solutions. Equation (3) has a unique solution

~x = A−1~b. (5)

The matrix A, or the operator L, is said to be invertible.
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1.2 A is singular and of rank n− k < n

The column vectors span a subspace Sn−k of dimension n−k. The homogeneous equation
associated with (3), A~x = 0, implies that ~ri · ~x = 0 for i = 1, 2, · · · , n. As a result the
Null space of A, denoted N (A), is orthogonal to all ~ri for i = 1, 2, · · · , n. Similarly,
N (At) is orthogonal to all ~ci for i = 1, 2, · · · , n.

1. If ~b /∈ Sn−k, equation 3 has no solution.

2. If ~b ∈ Sn−k, then ~b is orthogonal to N (At). The solution of equation 3 is

~x = ~xh + ~xp (6)

where ~xp is a particular solution of 3 and ~xh is a solution of the associated ho-
mogenous equation given by

~xh =
i=k∑

i=1

ai~ei (7)

where ~ei are independent vectors which span N (A) and ai are arbitrary constants.

2 Hilbert Space

Let E be an infinite dimensional vector space and let ~x = {x1, x2, · · · , xn, · · ·} ∈ E. For
example, consider the linear vector space of all functions f(t) continuous on the closed
interval [a, b]. We denote such a vector space by C(a, b).

1. Normed Space : E is said to be a normed vector space if a norm ||~x|| is defined
in E. For example, in C(a, b), we define the norm as the maximum value of the
function in the interval (a, b).

2. Convergence and Complete Space: A sequence of vectors ~x1, ~x2, · · · , ~xn, · · ·,
in E is said to converge to a vector ~x in E if, given ε > 0, there exists an integer
N(ε) such that

||~x− ~xn|| < ε, (8)

for all n > N . It follows that for a given ε > 0, there exists an integer N1(ε) such
that

||~xm − ~xn|| < ε, (9)

for all n and m greater than N1. Such a sequence is known as a Cauchy sequence.
The vector ~x is called the limit of the sequence, and we write

~x = lim
n→∞ ~xn. (10)

A vector space E is said to be complete if for every Cauchy sequence {~xn} in E
there exists a vector ~x ∈ E such that ~x = limn→∞ ~xn.
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3. Inner Product: For finite dimensional spaces we have defined the inner product
of two vectors by (1). However, for an infinite dimensional space such a product
will tend to infinity and thus is meaningless. Various inner products are usually
used depending on the spaces. For example, for two functions u and v in C(0, 1),
we use the inner product

(u, v) =
∫ 1

0
u(t)v(t)dt, (11)

and the norm ||u|| = (u, u)
1
2 , where u and v ∈ C(0, 1).

Definition: A complete normed linear space with an inner product is called a Hilbert
space.

3 Sturm-Liouville Theory

Consider the second order differential operator in self-adjoint form

L ≡ d

dx
(p(x)

d

dx
) + q(x), (12)

where p(x) ∈ C1(a, b) and q(x) ∈ C(a, b). Consider the homogeneous equation

Lu = λr(x)u (13)

where r(x) ∈ C(a, b) and λ is a constant. The constant λ for which a nontrivial solution
to (13) exists is called an eigenvalue of L, and the solution u(x) ∈ C2(a, b) corresponding
to λ is called an eigenfunction.

Definition: If (Lu, v) = (u,L∗v) for all u and v ∈ C2(a, b), then L∗ is called the adjoint
operator of L.

Definition: An operator L is said to be self-adjoint if L∗ = L.

Theorem: Every pair of eigenfunctions belonging to distinct eigenvalues of a self-adjoint
operator L : S ⊆ C2(a, b) → C(a, b) are orthogonal with respect to the weight function
r(x).

Proof: Lu = λru and Lv = µrv. Consider the inner products, (v,Lu) = λ(ru, v) and
(u,Lv) = µ(rv, u). Since the operator is self-adjoint, the two inner products are equal.
Therefore, λ(ru, v) = µ(rv, u). Or (λ− µ)(ru, v) = 0. Since λ 6= µ, (ru, v) = 0.
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3.1 Conditions for L to be Self–Adjoint

If L is self–adjoint, we have

(Lu, v) = (u,Lv) (14)

for all functions u and v ∈ S. Substituting the expression for L from 13, we get

∫ b

a
[
d

dx
(p

du

dx
) + qu]vdx =

∫ b

a
u[

d

dx
(p

dv

dx
) + qv]dx (15)

which, after integration by parts, yields the condition

[p(uv′ − u′v)]ba = 0. (16)

where the expression [X]ba = X(b)−X(a). This condition shows that the condition for
an operator to be self–adjoint depends on the property of the function space S as well
as on the operator through the function p(x). The following shows typical conditions to
be satisfied for self–adjointness.

1. u(a) = 0, u(b) = 0, for all u ∈ S.

2. u′(a) = 0, u′(b) = 0, for all u ∈ S.

3. u′(a)− σ1u(a) = 0, u′(b)− σ2u(b) = 0, for all u ∈ S.

4. u(a) = u(b), and, p(a)u′(a) = p(b)u′(b).

5. u(a) and u′(a) are finite and p(a) = 0, and u(b), and, u′(b) are finite and p(b) = 0.

Note that the first three conditions are homogeneous boundary conditions which defines
the function space S and are independent of the coefficients of the operator. Conditions
(4) are periodic and impose conditions on the coefficient p(x) of the operator. Finally,
conditions (5) is an example of homogeneous boundary conditions satisfied by the coef-
ficient p(x) of the operator.

These examples clearly shows that self–adjointness is a property of the boundary value
problem rather than that of the operator.

Theorem: Eigenfunctions corresponding to distinct eigenvalues of a self-adjoint opera-
tor L : S ⊆ C2(a, b) → C(a, b) are orthogonal with respect to the weight function r(x)
and, for homogeneous boundary conditions eigenfunctions corresponding to the same
eigenvalue are not independent.

Proof: We only give proof to the last statement. If Lu = λru and Lv = λrv, then

vLu− uLv = [p(vu′ − uv′)]′.
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Integrating gives, p(vu′−uv′) = Constant. For homogeneous conditions the constant is
zero, and we have, vu′ − uv′ = 0, or

u′

u
=

v′

v
,

which after integration gives, u = Kv, where K is a constant.

Definition: A set of functions {ϕ0, ϕ1, · · · , ϕn, · · · , } is a basis for C[a, b] if the set is
linearly independent and if every element f ∈ C[a, b] may be written as a linear combi-
nation of the set. Such a set of functions is called a complete set of functions.

Theorem: The eigenfunctions {ϕ0, ϕ1, · · · , ϕn, · · · , } of a self-adjoint operator L : S ⊆
C2(a, b) → C(a, b) form a complete set.

Corollary: If a set of functions is complete in a space then any function in the space
can be written as a linear combination of the elements of the complete set. Thus for any
square integrable continuous function f(x) we can write

f(x) =
n=∞∑

n=0

anϕn(x), (17)

where ϕn(x) are the eigenfunctions of the adjoint operator.

Theorem: Any regular self–adjoint boundary–value problem has an infinite sequence
of real eigenvalues λ0 < λ1 < λ2 · · · with

lim
n→∞λn = ∞.

The eigenfunction ϕn(x) corresponding to the eigenvalue λn has exactly n zeros in the
interval [a, b].

Example: Consider the boundary–value problem

d2y

dx2
+ λy = 0, y(0) = 0, y(π) = 0,

whose solution is λn = (n + 1)2, n = 1, 2, · · · and ϕn = sin(n + 1)x. Then ϕ0 = sinx has
no zeros between 0 and π, while ϕn = sin(n + 1)x has n zeros between 0 and π.

Theorem: For a regular self–adjoint boundary–value problem, the eigenvalues λn are
given by the asymptotic formula

√
λn =

nπ

b− a
+

O(1)

n
forn = 1, 2, · · · .
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4 Existence and Uniqueness of the Solution of Ly = f

Theorem: If the homogeneous equation Ly = 0 has a non-trivial solution, the solution
of the corresponding non-homogeneous equation is not unique. Conversely. if the solu-
tion of the non-homogeneous equation is not unique, there exists a non-trivial solution
of the homogeneous equation.

Theorem: The non-homogeneous equation

Ly = f (18)

has a solution for a given function f if, and only if, f is orthogonal to the null space of
the adjoint homogeneous equation

L∗z = 0. (19)

That is if
(f, z) = 0 (20)
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