UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi
AME-60612
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email:atassi.1@nd.edu

Linear Operators and Linear Equations

1 Linear Equations

Let E be an n-dimensional space and let $\vec{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \in E$. We define the inner product

$$
\begin{equation*}
(\vec{x}, \vec{y})=\sum_{i=1}^{i=n} x_{i} y_{i} . \tag{1}
\end{equation*}
$$

and the norm

$$
\begin{equation*}
\|\vec{x}\|=(\vec{x}, \vec{x})^{\frac{1}{2}} . \tag{2}
\end{equation*}
$$

A linear operator \mathcal{L} on E is denoted $\mathcal{L}: E \rightarrow F \subseteq E$. In linear algebra, the operator can be represented by a matrix \mathcal{A}. An $n \times n$ matrix \mathcal{A} can be represented by its column vectors, $\mathcal{A}=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$ or by its row vectors $\mathcal{A}=\left\{r_{1}, r_{2}, \cdots, r_{n}\right\}^{t}$. The rank of \mathcal{A} is the number of independent column vectors or the number of independent row vectors. If the rank of \mathcal{A} is $<n, \mathcal{A}$ is said to be singular.

A system of n linear equations can be written as

$$
\begin{equation*}
\mathcal{A} \vec{x}=\vec{b} . \tag{3}
\end{equation*}
$$

Or

$$
\begin{equation*}
\sum_{i=1}^{i=n} x_{i} \vec{c}_{i}=\vec{b} . \tag{4}
\end{equation*}
$$

1.1 \mathcal{A} is of rank n

The column vectors $\left\{\overrightarrow{c_{i}}\right\}$ are independent and span E. The associated homogenous equation, $\mathcal{A} \vec{x}=0$, has no nontrivial solutions. Equation (3) has a unique solution

$$
\begin{equation*}
\vec{x}=\mathcal{A}^{-1} \vec{b} . \tag{5}
\end{equation*}
$$

The matrix \mathcal{A}, or the operator \mathcal{L}, is said to be invertible.

1.2 \mathcal{A} is singular and of rank $n-k<n$

The column vectors span a subspace S_{n-k} of dimension $n-k$. The homogeneous equation associated with (3), $\mathcal{A} \vec{x}=0$, implies that $\overrightarrow{r_{i}} \cdot \vec{x}=0$ for $i=1,2, \cdots, n$. As a result the Null space of \mathcal{A}, denoted $\mathcal{N}(\mathcal{A})$, is orthogonal to all \vec{r}_{i} for $i=1,2, \cdots, n$. Similarly, $\mathcal{N}\left(\mathcal{A}^{t}\right)$ is orthogonal to all \vec{c}_{i} for $i=1,2, \cdots, n$.

1. If $\vec{b} \notin S_{n-k}$, equation 3 has no solution.
2. If $\vec{b} \in S_{n-k}$, then \vec{b} is orthogonal to $\mathcal{N}\left(\mathcal{A}^{t}\right)$. The solution of equation 3 is

$$
\begin{equation*}
\vec{x}=\vec{x}_{h}+\vec{x}_{p} \tag{6}
\end{equation*}
$$

where \vec{x}_{p} is a particular solution of 3 and \vec{x}_{h} is a solution of the associated homogenous equation given by

$$
\begin{equation*}
\vec{x}_{h}=\sum_{i=1}^{i=k} a_{i} \vec{e}_{i} \tag{7}
\end{equation*}
$$

where \vec{e}_{i} are independent vectors which span $\mathcal{N}(\mathcal{A})$ and a_{i} are arbitrary constants.

2 Hilbert Space

Let E be an infinite dimensional vector space and let $\vec{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\} \in E$. For example, consider the linear vector space of all functions $f(t)$ continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$. We denote such a vector space by $\mathrm{C}(\mathrm{a}, \mathrm{b})$.

1. Normed Space : E is said to be a normed vector space if a norm $\|\vec{x}\|$ is defined in E. For example, in $C(a, b)$, we define the norm as the maximum value of the function in the interval (a, b).
2. Convergence and Complete Space: A sequence of vectors $\vec{x}_{1}, \vec{x}_{2}, \cdots, \vec{x}_{n}, \cdots$, in E is said to converge to a vector \vec{x} in E if, given $\epsilon>0$, there exists an integer $N(\epsilon)$ such that

$$
\begin{equation*}
\left\|\vec{x}-\vec{x}_{n}\right\|<\epsilon, \tag{8}
\end{equation*}
$$

for all $n>N$. It follows that for a given $\epsilon>0$, there exists an integer $N_{1}(\epsilon)$ such that

$$
\begin{equation*}
\left\|\vec{x}_{m}-\vec{x}_{n}\right\|<\epsilon, \tag{9}
\end{equation*}
$$

for all n and m greater than N_{1}. Such a sequence is known as a Cauchy sequence. The vector \vec{x} is called the limit of the sequence, and we write

$$
\begin{equation*}
\vec{x}=\lim _{n \rightarrow \infty} \vec{x}_{n} . \tag{10}
\end{equation*}
$$

A vector space E is said to be complete if for every Cauchy sequence $\left\{\vec{x}_{n}\right\}$ in E there exists a vector $\vec{x} \in E$ such that $\vec{x}=\lim _{n \rightarrow \infty} \vec{x}_{n}$.
3. Inner Product: For finite dimensional spaces we have defined the inner product of two vectors by (1). However, for an infinite dimensional space such a product will tend to infinity and thus is meaningless. Various inner products are usually used depending on the spaces. For example, for two functions u and v in $\mathrm{C}(0,1)$, we use the inner product

$$
\begin{equation*}
(u, v)=\int_{0}^{1} u(t) v(t) d t, \tag{11}
\end{equation*}
$$

and the norm $\|u\|=(u, u)^{\frac{1}{2}}$, where u and $v \in C(0,1)$.
Definition: A complete normed linear space with an inner product is called a Hilbert space.

3 Sturm-Liouville Theory

Consider the second order differential operator in self-adjoint form

$$
\begin{equation*}
\mathcal{L} \equiv \frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x), \tag{12}
\end{equation*}
$$

where $p(x) \in C^{1}(a, b)$ and $q(x) \in C(a, b)$. Consider the homogeneous equation

$$
\begin{equation*}
\mathcal{L} u=\lambda r(x) u \tag{13}
\end{equation*}
$$

where $r(x) \in C(a, b)$ and λ is a constant. The constant λ for which a nontrivial solution to (13) exists is called an eigenvalue of \mathcal{L}, and the solution $u(x) \in C^{2}(a, b)$ corresponding to λ is called an eigenfunction.

Definition: If $(\mathcal{L} u, v)=\left(u, \mathcal{L}^{*} v\right)$ for all u and $v \in C^{2}(a, b)$, then \mathcal{L}^{*} is called the adjoint operator of \mathcal{L}.

Definition: An operator \mathcal{L} is said to be self-adjoint if $\mathcal{L}^{*}=\mathcal{L}$.
Theorem: Every pair of eigenfunctions belonging to distinct eigenvalues of a self-adjoint operator $\mathcal{L}: S \subseteq C^{2}(a, b) \rightarrow C(a, b)$ are orthogonal with respect to the weight function $r(x)$.

Proof: $\mathcal{L} u=\lambda r u$ and $\mathcal{L} v=\mu r v$. Consider the inner products, $(v, \mathcal{L} u)=\lambda(r u, v)$ and $(u, \mathcal{L} v)=\mu(r v, u)$. Since the operator is self-adjoint, the two inner products are equal. Therefore, $\lambda(r u, v)=\mu(r v, u)$. Or $(\lambda-\mu)(r u, v)=0$. Since $\lambda \neq \mu,(r u, v)=0$.

3.1 Conditions for \mathcal{L} to be Self-Adjoint

If \mathcal{L} is self-adjoint, we have

$$
\begin{equation*}
(\mathcal{L} u, v)=(u, \mathcal{L} v) \tag{14}
\end{equation*}
$$

for all functions u and $v \in \mathcal{S}$. Substituting the expression for \mathcal{L} from 13 , we get

$$
\begin{equation*}
\int_{a}^{b}\left[\frac{d}{d x}\left(p \frac{d u}{d x}\right)+q u\right] v d x=\int_{a}^{b} u\left[\frac{d}{d x}\left(p \frac{d v}{d x}\right)+q v\right] d x \tag{15}
\end{equation*}
$$

which, after integration by parts, yields the condition

$$
\begin{equation*}
\left[p\left(u v^{\prime}-u^{\prime} v\right)\right]_{a}^{b}=0 \tag{16}
\end{equation*}
$$

where the expression $[X]_{a}^{b}=X(b)-X(a)$. This condition shows that the condition for an operator to be self-adjoint depends on the property of the function space \mathcal{S} as well as on the operator through the function $p(x)$. The following shows typical conditions to be satisfied for self-adjointness.

1. $u(a)=0, u(b)=0$, for all $u \in \mathcal{S}$.
2. $u^{\prime}(a)=0, u^{\prime}(b)=0$, for all $u \in \mathcal{S}$.
3. $u^{\prime}(a)-\sigma_{1} u(a)=0, u^{\prime}(b)-\sigma_{2} u(b)=0$, for all $u \in \mathcal{S}$.
4. $u(a)=u(b)$, and, $p(a) u^{\prime}(a)=p(b) u^{\prime}(b)$.
5. $u(a)$ and $u^{\prime}(a)$ are finite and $p(a)=0$, and $u(b)$, and, $u^{\prime}(b)$ are finite and $p(b)=0$.

Note that the first three conditions are homogeneous boundary conditions which defines the function space \mathcal{S} and are independent of the coefficients of the operator. Conditions (4) are periodic and impose conditions on the coefficient $p(x)$ of the operator. Finally, conditions (5) is an example of homogeneous boundary conditions satisfied by the coefficient $p(x)$ of the operator.

These examples clearly shows that self-adjointness is a property of the boundary value problem rather than that of the operator.

Theorem: Eigenfunctions corresponding to distinct eigenvalues of a self-adjoint operator $\mathcal{L}: S \subseteq C^{2}(a, b) \rightarrow C(a, b)$ are orthogonal with respect to the weight function $r(x)$ and, for homogeneous boundary conditions eigenfunctions corresponding to the same eigenvalue are not independent.

Proof: We only give proof to the last statement. If $\mathcal{L} u=\lambda r u$ and $\mathcal{L} v=\lambda r v$, then

$$
v \mathcal{L} u-u \mathcal{L} v=\left[p\left(v u^{\prime}-u v^{\prime}\right)\right]^{\prime} .
$$

Integrating gives, $p\left(v u^{\prime}-u v^{\prime}\right)=$ Constant. For homogeneous conditions the constant is zero, and we have, $v u^{\prime}-u v^{\prime}=0$, or

$$
\frac{u^{\prime}}{u}=\frac{v^{\prime}}{v},
$$

which after integration gives, $u=K v$, where K is a constant.
Definition: A set of functions $\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}, \cdots,\right\}$ is a basis for $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ if the set is linearly independent and if every element $f \in C[a, b]$ may be written as a linear combination of the set. Such a set of functions is called a complete set of functions.

Theorem: The eigenfunctions $\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}, \cdots,\right\}$ of a self-adjoint operator $\mathcal{L}: S \subseteq$ $C^{2}(a, b) \rightarrow C(a, b)$ form a complete set.

Corollary: If a set of functions is complete in a space then any function in the space can be written as a linear combination of the elements of the complete set. Thus for any square integrable continuous function $f(x)$ we can write

$$
\begin{equation*}
f(x)=\sum_{n=0}^{n=\infty} a_{n} \varphi_{n}(x), \tag{17}
\end{equation*}
$$

where $\varphi_{n}(x)$ are the eigenfunctions of the adjoint operator.

Theorem: Any regular self-adjoint boundary-value problem has an infinite sequence of real eigenvalues $\lambda_{0}<\lambda_{1}<\lambda_{2} \cdots$ with

$$
\lim _{n \rightarrow \infty} \lambda_{n}=\infty .
$$

The eigenfunction $\varphi_{n}(x)$ corresponding to the eigenvalue λ_{n} has exactly n zeros in the interval $[a, b]$.

Example: Consider the boundary-value problem

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, y(0)=0, y(\pi)=0
$$

whose solution is $\lambda_{n}=(n+1)^{2}, n=1,2, \cdots$ and $\varphi_{n}=\sin (n+1) x$. Then $\varphi_{0}=\sin x$ has no zeros between 0 and π, while $\varphi_{n}=\sin (n+1) x$ has n zeros between 0 and π.

Theorem: For a regular self-adjoint boundary-value problem, the eigenvalues λ_{n} are given by the asymptotic formula

$$
\sqrt{\lambda_{n}}=\frac{n \pi}{b-a}+\frac{O(1)}{n} \text { for } n=1,2, \cdots .
$$

4 Existence and Uniqueness of the Solution of $\mathcal{L} y=f$

Theorem: If the homogeneous equation $\mathcal{L} y=0$ has a non-trivial solution, the solution of the corresponding non-homogeneous equation is not unique. Conversely. if the solution of the non-homogeneous equation is not unique, there exists a non-trivial solution of the homogeneous equation.

Theorem: The non-homogeneous equation

$$
\begin{equation*}
\mathcal{L} y=f \tag{18}
\end{equation*}
$$

has a solution for a given function f if, and only if, f is orthogonal to the null space of the adjoint homogeneous equation

$$
\begin{equation*}
\mathcal{L}^{*} z=0 . \tag{19}
\end{equation*}
$$

That is if

$$
\begin{equation*}
(f, z)=0 \tag{20}
\end{equation*}
$$

