
Kinematic Waves

Introduction

These are waves which result from the conservation equation

∂E

∂t
+∇ · I = 0 (1)

where E represents a scalar density field and I, its outer flux. The one-dimensional
form of (1) is

∂E

∂t
+

∂I

∂x
= 0. (2)

As an example, we consider a gas of density ρ streaming with a velocity v. In this
case, the conservation of mass can be expressed by (1), if we take E = ρ and I = ρv,

∂ρ

∂t
+∇ · (ρv) = 0. (3)

For a one-dimensional problem, we have

∂ρ

∂t
+

∂(ρv)

∂x
= 0. (4)

We note that neither (3) nor (4) are sufficient to determine both ρ and v, since we
have one equation and more than one variable.

We now confine our attention to the one-dimensional equation (2) and further
assume that the flux depends only on the density E., i.e., I = I(E). We can the
write

∂E

∂t
+

dI

dE

∂E

∂x
= 0. (5)

It is customary to take the following notations: E = u, c(u) = dI
dE

, and to write (5)
as

∂u

∂t
+ c(u)

∂u

∂x
= 0 (6)

Equation (6) is a first–order quasi-linear partial differential equation.

General Solution:

The characteristics equations for (6) are given by

dt

1
=

dx

c(u)
=

du

0
. (7)
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The last equation shows that along a characteristic curve,

u = k2. (8)

The first equation of (7) then reduces to

dt

1
=

dx

c(k2)
, (9)

which can be integrated immediately to give

x− c(k2)t = k1. (10)

Therefore the general solution is given in an implicit form,

u = f [x− c(u)t]. (11)

The equation

dx

dt
= c(k2) (12)

represents the projection of the characteristic on the x-t plane. Let C be this projection
which is here a straight line that intersects the x–axis at ξ and along which u is
constant.

o x

t

dx/dt = c(k2)

C

ξ

Figure 1: The projection of the characteristics on the t–x plane.

Initial Value Problem:

To find a solution to (6), we need to specify the values of the function u at some time
t = 0, for example. Let

u(x, 0) = f(x), −∞ < x < +∞. (13)
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The equation for C is given by

x = ξ + c(u)t (14)

C intersects the x-axis at ξ, i.e.,

at t = 0, x = ξ, u = f(ξ), (15)

Since u is constant along C and depends only on ξ, the slope of C is c(u) = c[f(ξ)] is
a known function of ξ. Thus we have the following parametric representation of the
solution:

x = ξ + c[(f(ξ)]t (16)

u = f(ξ) (17)

It is easy to verify that (16 and 17) represent a solution to the initial–value problem
defined by (6 and 13). First we note that

∂u

∂t
= f ′(ξ)

∂ξ

∂t
,

∂u

∂x
= f ′(ξ)

∂ξ

∂x
.

To evaluate ∂ξ
∂t

and ∂ξ
∂x

, we first differentiate (16) with respect to t

0 =
∂ξ

∂t
+

dc(u)

du

du

dξ

∂ξ

∂t
t + c[f(ξ)], (18)

which gives
∂ξ

∂t
= − c[f(ξ)]

1 + dc(u)
du

f ′(ξ)t
. (19)

We then differentiate (16) with respect to x,

1 =
∂ξ

∂x
+

dc(u)

du

du

dξ

∂ξ

∂x
t, (20)

which gives
∂ξ

∂x
=

1

1 + dc(u)
du

f ′(ξ)t
. (21)

We finally get,

∂u

∂t
= − c[f(ξ)]f ′(ξ)

1 + dc(u)
du

f ′(ξ)t
,

∂u

∂x
=

f ′(ξ)

1 + dc(u)
du

f ′(ξ)t
, (22)

which substituted in (6) gives an identity.
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Validity of Solution

We now examine whether the solution (16 and 17) to the initial–value problem (6, 13)
is valid for all time t ≥ 0 or whether there is a limit tb where the solution will break
down if t > tb. The expressions for the derivatives ∂u

∂t
and ∂u

∂x
given by equations (22)

suggest that those derivatives may become singular for t = −1/[(dc/du)f ′(ξ)].

On the other hand, let us recall that the theorem for the existence and uniqueness
of the Cauchy boundary-value problem states that a characteristic C must intersect
the x–axis only once. So, since (6) is nonlinear, the characteristics C depend on
the initial conditions. If, for example, two characteristics intersect this will violate
the conditions stated in the existence and uniqueness theorem. Let us then examine
what happens when two characteristics intersect each other. At the intersection
both characteristics have the same x and t as shown in Figure 2. We consider two
characteristics one intersecting the x–axis at ξ, the other at ξ + δξ. The equations
for these characteristics are given below.

O x

t

Cξ

Cξ+δξ

ξ ξ+δξ

Figure 2: Intersection of two characteristics.

x = ξ + c[f(ξ)]t, (23)

x = ξ + δξ + c[f(ξ + δξ)]t = ξ + δξ + c[f(ξ)]t +
dc

du
f ′(ξ)δξt, (24)

where we have expanded (24) with respect to the small parameter δξ. Subtracting
(23) from (24), we get

t = − 1
dc
du

f ′(ξ)
. (25)

4



This is exactly the time at which both ∂u
∂t

and ∂u
∂x

become singular. Since t > 0, there
is no intersection if dc

du
f ′(ξ) > 0. On the other hand, if

dc

du
f ′(ξ) < 0, (26)

the time at first breaking will occur at the maximum value of [ dc
du

f ′(ξ)],

tb =
1

| dc
du

f ′(ξ)|
max

. (27)

These results can also be directly derived from the general form of the solution
(11). Differentiating u with respect to t, we get

∂u

∂t
= −[c(u) + tdc(u)/du

∂u

∂t
]f ′[x− c(u)t], (28)

and
∂u

∂t
= − c(u)f ′

1 + tf ′dc(u)/du
. (29)

When t = − 1
f ′dc(u)/du

, ∂u
∂t
→∞.

Evolution of the solution in time:

If dc(u)/du > 0, then (22) shows that as time increases a steepening of the slope of
the initial distribution for f ′ < 0 and a flattening for f ′ > 0. On the other hand, if
dc(u)/du < 0, then (22) shows that as time increases a flattening of the slope of the
initial distribution for f ′ > 0 and a steepening for f ′ > 0. As an example, consider
the equation

∂u

∂t
+ u

∂u

∂x
= 0, (30)

with the initial condition at t = 0, u = exp(−x2/2). Here, c = u and dc/du = 1. The
breaking occurs at t = 1.6487. Figure 3 shows the evolution of the solution in time.
As time increases the slope of the wave steepens to the right and flattens to the left.
For t > 1.6487, the solution becomes multivalued and hence physically unacceptable.

Traffic Flow:

Let ρ(x, t) be a density per unit length. The cars are moving at speed v(x, t). The
car flux, the number of cars crossing a point per unit time, is : q(x, t) = ρv. The
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Figure 3: Evolution of the solution in time. Breaking occurs at t=1.6487. Observe
how nonlinear effects flatten the wave to the left and steepen it to the right.

conservation relation between ρ and q is summarized as follows

d

dt

∫ x2

x1

ρdx = cars in - cars out (31)

= q(x1, t)− q(x2, t) (32)

= −
∫ x2

x1

∂q

∂x
dx (33)

So,
∂ρ

∂t
+

∂q

∂x
= 0. (34)

The wave velocity

c(ρ) =
dq

dρ
= v + ρ

∂v

∂ρ
. (35)
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Since ∂v
∂ρ

< 0, it follows that c < v. Hence for a driver the wave will be moving
with the negative velocity c− v < 0, implying the wave propagates backward. As an
example we consider the traffic through the Lincoln tunnel in New York. Data were
gathered, and it was found that

q = aρ(1− ρ

ρj

) (36)

a = 17.2 mph (37)

ρj = 250 vpm (38)

c(ρ) =
dq

dρ
= a(1− 2ρ

ρj

) (39)

dc

dρ
= −2a

ρj

(40)
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Figure 4: Car flux versus car density in the Lincoln tunnel.

We assume the following initial distribution for the cars.

ρ(x, 0) = ρ̄e−αx2

(41)

7



0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20

Car density: vehicles per mile

W
av

e 
ve

lo
ci

ty
: m

ile
 p

er
 h

ou
r

Figure 5: Wave velocity versus car density.

The wave velocity c(ρ) = dq/dρ, hence

c[ρ(ξ)] = a(1− 2ρ̄

ρj

e−αξ2

) (42)

dc

dξ
=

4aαρ̄

ρj

ξe−αξ2

(43)

tb = [
−1

c′u
]min = +

ρj

4aαρ̄

1

|ξe−αξ2|max

(44)

Let,

z = ξe−αξ2

(45)

dz

dξ
= (1− 2αξ2)e−αξ2

. (46)

The maximum occurs at ξ = −
√

1
2α

. Therefore,

tb =
ρj

2aρ̄

√
e

2α
. (47)
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Damped Waves

Consider the equation
∂u

∂t
+ u

∂u

∂x
+ au = 0, (48)

where is a positive constant. The characteristic equations for are (48)

dt

1
=

dx

u
=

du

−au
(49)

Integrating (49), we get

du

u
= −adt (50)

u = k1e
−at (51)

x = −k1

a
e−at + k2. (52)

Applying the initial condition,

u(x, 0) = f(x), u = f(ξ) (53)

t = 0, u = k1 = f(k2) (54)

ξ = k2 − k1

a
(55)

k2 = ξ +
f(ξ)

a
(56)

x = ξ +
1− e−at

a
f(ξ) (57)

u = f(ξ)e−at (58)

let us examine the breaking of the solution. Two characteristic curves interact

x = ξ1 +
1− e−at

a
f(ξ1) (59)

x = ξ2 +
1− e−at

a
f(ξ2) (60)

0 = (ξ2 − ξ1) +
1− e−at

a
(f(ξ2)− f(ξ1)) (61)

0 = 1 +
1− e−at

a

(f(ξ2)− f(ξ1))

ξ2 − ξ1

(62)

0 = 1 +
1− e−at

a
f ′(ξ). (63)
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This implies that f ′(ξ) < 0, and

f ′(ξ) < −a. (64)

The breaking will occur only if the initial curve has enough negative slope. The
breaking time is

tb = {− ln(1 + a/f ′(ξ))
a

}min. (65)
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