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INVERSION OF THE CAUCHY TYPE INTEGRAL

Consider the integral
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where b > a and ϕ(t) satisfies Holder’s condition on the interval [a, b]. The inverse
problem can be stated as follows:“ Given the function f(t) on the interval [a, b], find the
density function ϕ(t).” The inverse problem is not unique. It has the following solutions:

1. Solution bound at a and unbound at b
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2. Solution bound at b and unbound at a
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3. Solution unbound at both ends a and b
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where c is an arbitrary constant.

4. Solution bound at both ends a and b

In general, the inverse solution may not exist. However, if the functionf(t) satisfies
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then, we have
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