UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

INVERSION OF THE CAUCHY TYPE INTEGRAL

Consider the integral

$$
\begin{equation*}
\frac{1}{\pi} \oint_{a}^{b} \frac{\varphi(\tau)}{\tau-t} d \tau=f(t) \tag{1}
\end{equation*}
$$

where $b>a$ and $\varphi(t)$ satisfies Holder's condition on the interval $[a, b]$. The inverse problem can be stated as follows:" Given the function $f(t)$ on the interval [$a, b]$, find the density function $\varphi(t)$." The inverse problem is not unique. It has the following solutions:

1. Solution bound at a and unbound at b

$$
\begin{equation*}
\varphi(t)=-\frac{1}{\pi} \sqrt{\frac{t-a}{b-t}} \oint_{a}^{b} \sqrt{\frac{b-\tau}{\tau-a}} \frac{f(\tau)}{\tau-t} d \tau \tag{2}
\end{equation*}
$$

2. Solution bound at b and unbound at a

$$
\begin{equation*}
\varphi(t)=-\frac{1}{\pi} \sqrt{\frac{b-t}{t-a}} \oint_{a}^{b} \sqrt{\frac{\tau-a}{b-\tau}} \frac{f(\tau)}{\tau-t} d \tau \tag{3}
\end{equation*}
$$

3. Solution unbound at both ends a and b

$$
\begin{equation*}
\varphi(t)=-\frac{1}{\pi} \frac{1}{\sqrt{(b-t)(t-a)}}\left[\oint_{a}^{b} \frac{\sqrt{(\tau-a)(b-\tau)} f(\tau)}{(\tau-t)} d \tau+C\right] \tag{4}
\end{equation*}
$$

where c is an arbitrary constant.
4. Solution bound at both ends a and b

In general, the inverse solution may not exist. However, if the function $f(t)$ satisfies the condition

$$
\begin{equation*}
\oint_{a}^{b} \frac{f(\tau)}{\sqrt{(\tau-a)(b-\tau)}} d \tau \tag{5}
\end{equation*}
$$

then, we have

$$
\begin{equation*}
\varphi(t)=-\frac{1}{\pi} \sqrt{(b-t)(t-a)} \oint_{a}^{b} \frac{f(\tau)}{\sqrt{(\tau-a)(b-\tau)}} \frac{d \tau}{(\tau-t)} \tag{6}
\end{equation*}
$$

