UNIVERSITY OF NOTRE DAME
 DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi
AME-60612
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email: atassi@nd.edu

Orthogonal Curvilinear Coordinates

1 Definitions

Let $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ be the Cartesian coordinates of a point M with respect to a frame of reference defined by the unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, We introduce three functions defined by

$$
\begin{equation*}
u_{j}=u_{j}\left(x_{1}, x_{2}, x_{3}\right), j=1,3 \tag{1}
\end{equation*}
$$

in a region \mathcal{R}. The equation $u_{j}=c_{j}$, where c_{j} is a constant, represents a surface. The system of two equations $u_{2}=c_{2}$ and $u_{3}=c_{3}$ represent a line γ_{1} where the two surfaces intersect. Along γ_{1}, only u_{1} varies. The system of three equations $u_{1}=c_{1}, u_{2}=c_{2}$ and $u_{3}=c_{3}$ represent a point where the three surfaces intersect. At every point $M \in \mathcal{R}$, there are three lines $\gamma_{i}\left(u_{i}\right)$. For Cartesian coordinates, these surfaces are planes. For cylindrical coordinates, we define

$$
\begin{align*}
& u_{1}=r=\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}} \tag{2}\\
& u_{2}=\theta=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right) \tag{3}\\
& u_{3}=x_{3} \tag{4}
\end{align*}
$$

Here $r=c_{1}$ represents a circular cylinder of radius $c_{1}, \theta=c_{2}$ represents a vertical plane, and $x_{3}=c_{3}$ represents a horizontal plane. The two equations $r=c_{1}$ and $x_{3}=c_{3}$ represent a circle in a horizontal plane, only θ varies as we move along the circle.

The position vector of a point M can be expressed in the Cartesian system as

$$
\begin{equation*}
\overrightarrow{O M}=\mathbf{x}=x_{i} \mathbf{e}_{i} \tag{6}
\end{equation*}
$$

where the repeated index implies summation, i.e., $x_{i} \mathbf{e}_{i}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}$. Note that

$$
\begin{equation*}
\frac{\partial \mathbf{x}}{\partial x_{i}}=\mathbf{e}_{i} \tag{7}
\end{equation*}
$$

We now want to use u_{j} as a new coordinate system. We assume that the Cartesian coordinates x_{i} are given in terms of the new coordinates u_{j},

$$
\begin{equation*}
x_{i}=x_{i}\left(u_{1}, u_{2}, u_{3}\right), \quad i=1,3 . . \tag{8}
\end{equation*}
$$

Differentiating \mathbf{x} with respect to u_{j}, we get

$$
\begin{equation*}
d \mathbf{x}=\frac{\partial \mathbf{x}}{\partial u_{j}} d u_{j}=\mathbf{e}_{i} \frac{\partial x_{i}}{\partial u_{j}} d u_{j} . \tag{9}
\end{equation*}
$$

The vector

$$
\begin{equation*}
\hat{\mathbf{E}}_{j}=\frac{\partial \mathbf{x}}{\partial u_{j}}=\mathbf{e}_{i} \frac{\partial x_{i}}{\partial u_{j}} \tag{10}
\end{equation*}
$$

is tangent to γ_{j}. Note that

$$
\begin{equation*}
\hat{\mathbf{E}}_{j}=\frac{\partial \mathbf{x}}{\partial s_{j}} \frac{\partial s_{j}}{\partial u_{j}} \tag{11}
\end{equation*}
$$

where ∂s_{j} is the elementary arc length along γ_{j}. We also note that the vector $\mathbf{E}_{j}=\frac{\partial \mathbf{x}}{\partial s_{j}}$ is a unit vector. Thus if $h_{j}=\frac{\partial s_{j}}{\partial u_{j}}$, along $\gamma_{j}, d s_{j}=h_{j} d u_{j}$ and $\hat{\mathbf{E}}_{j}=h_{j} \mathbf{E}_{j}$. Hence, using (10), we get

$$
\begin{equation*}
h_{j} \mathbf{E}_{j}=\mathbf{e}_{i} \frac{\partial x_{i}}{\partial u_{j}} \tag{12}
\end{equation*}
$$

Since both \mathbf{e}_{i} and \mathbf{E}_{j} are orthonormal vectors,

$$
\begin{equation*}
h_{j}^{2}=\sum_{i=1}^{i=3}\left(\frac{\partial x_{i}}{\partial u_{j}}\right)^{2} . \tag{13}
\end{equation*}
$$

Equation(13) defines the three scales associated with the new coordinates system.

2 Elementary Quantities

2.1 Elementary Arc Length

The elementary arc length of a line, not coinciding with the three lines defining the coordinate system at a point M , is obtained by taking the magnitude of (9),

$$
\begin{equation*}
(d s)^{2}=h_{j}^{2}\left(d u_{j}\right)^{2} . \tag{14}
\end{equation*}
$$

2.2 Elementary Surface

The elementary surface of $u_{1}=c_{1}$ which contains γ_{2} and γ_{3} is

$$
\begin{equation*}
d \sigma_{1}=d s_{2} d s_{3}=h_{2} h_{3} d u_{2} d u_{3} . \tag{15}
\end{equation*}
$$

2.3 Elementary Volume

The elementary volume

$$
\begin{equation*}
d V=d s_{1} d s_{2} d s_{3}=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3} \tag{16}
\end{equation*}
$$

3 Differential Operators

3.1 Gradient

The gradient is defined by

$$
\begin{equation*}
d f=\nabla f \cdot d \mathbf{x} \tag{17}
\end{equation*}
$$

We can also express $d f$ as

$$
\begin{equation*}
d f=\frac{\partial f}{\partial u_{j}} d u_{j} . \tag{18}
\end{equation*}
$$

Using (9), we get

$$
\begin{equation*}
\nabla f=\frac{\mathbf{E}_{j}}{h_{j}} \frac{\partial f}{\partial u_{j}} \tag{19}
\end{equation*}
$$

Or

$$
\begin{equation*}
\nabla=\frac{\mathbf{E}_{j}}{h_{j}} \frac{\partial}{\partial u_{j}} \tag{20}
\end{equation*}
$$

3.1.1 Useful Results

1.

$$
\begin{equation*}
\nabla u_{j}=\frac{\mathbf{E}_{j}}{h_{j}} \tag{21}
\end{equation*}
$$

2. Equation(21) implies that

$$
\begin{equation*}
\nabla \times \frac{\mathbf{E}_{j}}{h_{j}}=0 \tag{22}
\end{equation*}
$$

Since

$$
\begin{equation*}
\nabla \times(f \mathbf{a}) \equiv f \nabla \times \mathbf{a}+\nabla f \times \mathbf{a} \tag{23}
\end{equation*}
$$

then,

$$
\begin{equation*}
\nabla \times \frac{\mathbf{E}_{j}}{h_{j}} \equiv \frac{1}{h_{j}} \nabla \times \mathbf{E}_{j}+\nabla \frac{1}{h_{j}} \times \mathbf{E}_{j} \tag{24}
\end{equation*}
$$

we deduce

$$
\begin{equation*}
\nabla \times \mathbf{E}_{j}=\frac{\nabla h_{j} \times \mathbf{E}_{j}}{h_{j}} \tag{25}
\end{equation*}
$$

3.2 Divergence

Note that

$$
\frac{\mathbf{E}_{1}}{h_{2} h_{3}}=\frac{\mathbf{E}_{2}}{h_{2}} \times \frac{\mathbf{E}_{3}}{h_{3}} .
$$

Using (21),

$$
\frac{\mathbf{E}_{1}}{h_{2} h_{3}}=\nabla u_{2} \times \nabla u_{3} .
$$

Taking the divergence of both sides and noting that

$$
\nabla \cdot \mathbf{A} \times \mathbf{B}=\equiv \mathbf{B} \cdot \nabla \mathbf{A}-\mathbf{A} \cdot \nabla \mathbf{B}
$$

we arrive at

$$
\begin{equation*}
\nabla \cdot \frac{\mathbf{E}_{1}}{h_{2} h_{3}}=0 \tag{26}
\end{equation*}
$$

Or

$$
\begin{equation*}
\nabla \cdot \frac{\mathbf{E}_{i}}{h_{j} h_{k}}=0 \tag{27}
\end{equation*}
$$

where $i \neq j \neq k$.

$$
\begin{align*}
\nabla \cdot \mathbf{F} & =\nabla \cdot\left(F_{i} \mathbf{E}_{i}\right) \\
& =\nabla \cdot\left(\frac{\mathbf{E}_{i}}{h_{j} h_{k}}\left(h_{j} h_{k} F_{i}\right)\right) \\
& =\frac{\mathbf{E}_{i}}{h_{j} h_{k}} \cdot \nabla\left(h_{j} h_{k} F_{i}\right) \tag{28}
\end{align*}
$$

This gives the expression for the divergence

$$
\begin{equation*}
\nabla \cdot \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial u_{i}}\left(h_{j} h_{k} F_{i}\right) \tag{29}
\end{equation*}
$$

where $i \neq j \neq k$.

3.3 curl

Using $(25,23)$, it is readily shown that

$$
\begin{equation*}
\nabla \times F_{k} \mathbf{E}_{k}=\frac{1}{h_{k}} \nabla\left(h_{k} F_{k}\right) \times \mathbf{E}_{k} \tag{30}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla \times F_{k} \mathbf{E}_{k}=\frac{1}{h_{j} h_{k}} \frac{\partial\left(h_{k} F_{k}\right)}{\partial u_{j}}\left(\mathbf{E}_{\mathbf{j}} \times \mathbf{E}_{k}\right) . \tag{31}
\end{equation*}
$$

Noting that $\mathbf{E}_{j} \times \mathbf{E}_{k}=\epsilon_{i j k} \mathbf{E}_{i}$, where the permutation symbol $\epsilon_{i j k}=1$ for i, j, k in order but $i \neq j \neq k, \epsilon_{i j k}=-1$ for i, j, k not in order but $i \neq j \neq k$, and $\epsilon_{i j k}=0$ when two indices are equal, we obtain,

$$
\begin{equation*}
\nabla \times \mathbf{F}=\epsilon_{i j k} \frac{h_{i} \mathbf{E}_{i}}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial u_{j}}\left(h_{k} F_{k}\right) . \tag{32}
\end{equation*}
$$

The expression (32) for the curl can be cast in the familiar form,

$$
\nabla \times \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \mathbf{E}_{1} & h_{2} \mathbf{E}_{2} & h_{3} \mathbf{E}_{3} \tag{33}\\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
h_{1} F_{1} & h_{2} F_{2} & h_{3} F_{3}
\end{array}\right|
$$

