UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi
AME-562
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email:atassi@nd.edu

Green's Function

I. Let $r=|\vec{x}-\vec{y}|$, where the position vector $\vec{x}=\left\{x_{1}, x_{2}, x_{3}\right\}$ is called the observation point, and $\vec{y}=\left\{y_{1}, y_{2}, y_{3}\right\}$ is a constant vector we call the source point. The gradient of $1 / r$ is defined in Cartesian coordinates as $\nabla 1 / r=\left\{\partial 1 / r / \partial x_{1}, \partial 1 / r / \partial x_{2}, \partial 1 / r / \partial x_{3}\right\}$.

It is easy to show that $\nabla^{2}\left(\frac{1}{r}\right)=0$, except at $r=0$ since the function is singular at this point. It is interesting to examine the behavior of $\nabla^{2}\left(\frac{1}{r}\right)$ at the singular point $\vec{x}=\vec{y}$. Let us consider the integral

$$
\begin{equation*}
\int_{\mathcal{V}} \nabla^{2}\left(\frac{1}{r}\right) d \vec{x}, \tag{1}
\end{equation*}
$$

where \mathcal{V} is volume inside the sphere Σ centered at the point \vec{y} and of radius R. Using the divergence theorem, we get

$$
\begin{equation*}
\int_{\mathcal{V}} \nabla^{2}\left(\frac{1}{r}\right) d \vec{x}=\int_{\Sigma} \nabla\left(\frac{1}{r}\right) \cdot \vec{n} d \sigma_{r}, \tag{2}
\end{equation*}
$$

where \vec{n} is the unit outward normal to Σ. We note that $\nabla(1 / r)=-\vec{n} / r^{2}$ and that the elementary surface $d \sigma_{r}=r^{2} \sin \varphi d \varphi d \theta$. Carrying out the surface integral of the right-hand-side of (2), we get

$$
\begin{equation*}
\int_{\mathcal{V}} \nabla^{2}\left(\frac{1}{r}\right) d \vec{x}=-4 \pi \tag{3}
\end{equation*}
$$

The function $g(r)=1 / r$ is known as the free-space Green function for the Laplace equation in a three-dimensional space.

The function

$$
\begin{equation*}
\delta(\vec{x}-\vec{y})=-\frac{1}{4 \pi} \nabla^{2}\left(\frac{1}{r}\right) \tag{4}
\end{equation*}
$$

vanishes everywhere except at $\vec{x}=\vec{y}$, and is such that its integral in any sphere is equal to unity. The function $\delta(\vec{x}-\vec{y})$ is known as the Dirac function. Of course, it should be pointed out that we are stretching the definition of functions by calling δ a function. However, δ has some very interesting properties. For example,

$$
\begin{equation*}
\int_{\mathcal{V}} \delta(\vec{x}-\vec{y}) f(\vec{x}) d \vec{x}=f(\vec{y}) \tag{5}
\end{equation*}
$$

We also note that δ is an even function, i.e., $\delta(\vec{x}-\vec{y})=\delta(\vec{y}-\vec{x})$
This result will help obtain a particular solution to the inhomogeneous equation

$$
\begin{equation*}
\nabla^{2} u=f(\vec{x}) . \tag{6}
\end{equation*}
$$

If we express $f(\vec{x})$ using (5), (6) becomes

$$
\begin{equation*}
\nabla^{2} u=\int_{\mathcal{V}} \delta(\vec{x}-\vec{y}) f(\vec{y}) d \vec{y} \tag{7}
\end{equation*}
$$

where we have exchanged the variables \vec{x} and \vec{y}. Since only δ in the right-hand-side of (7) depends on \vec{x}, we deduce immediately,

$$
\begin{equation*}
u=\frac{-1}{4 \pi} \int_{\mathcal{V}} \frac{f(\vec{y})}{r} d \vec{y} . \tag{8}
\end{equation*}
$$

The Green's function $g(r)=1 / r$ can be thought of as the inverse of the Laplace operator.

