Acoustic Waves in a Circular Duct

Consider a circular duct of radius a. We take a cylindrical coordinate system $\{x, r, \theta\}$, where the x axis is along the duct axis. The acoustic pressure is governed by the wave equation

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}-\nabla^{2} p=0 \tag{1}
\end{equation*}
$$

The pressure must satisfy an initial condition at $x=x_{0}$ and a wall boundary condition at $r=a$. We use the method of separation of variables and assume

$$
\begin{equation*}
p(x, r, \theta, t)=X(x) R(r) \Theta(\theta) T(t) \tag{2}
\end{equation*}
$$

Substituting (2) into (1) and dividing by $X(x) R(r) \Theta(\theta) T(t)$, gives

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}+\frac{R^{\prime \prime}+R^{\prime} / r}{R}+\frac{\Theta^{\prime \prime}}{r^{2} \Theta}-\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}=0 \tag{3}
\end{equation*}
$$

If we take

$$
\begin{align*}
& \frac{\Theta^{\prime \prime}}{\Theta}=-m^{2} \tag{4}\\
& \frac{X^{\prime \prime}}{X}=-k^{2} \tag{5}\\
& \frac{T^{\prime \prime}}{T}=-\omega^{2} \tag{6}
\end{align*}
$$

where m is an integer. This implies a solution of the form

$$
\begin{equation*}
p_{m k \omega}=R_{m}(r) e^{i(k x+m \theta-\omega t)} \tag{7}
\end{equation*}
$$

The function R_{m} satisfies the equation

$$
\begin{equation*}
r^{2} R_{m}^{\prime \prime}+r R_{m}^{\prime}+\left(\mu^{2} r^{2}-m^{2}\right) R_{m}=0 \tag{8}
\end{equation*}
$$

where we have introduced the eigenvalue $\mu^{2}=\omega^{2} / c^{2}-k^{2}$. For a rigid duct, this equation must satisfy an impermeability condition

$$
\begin{equation*}
\left(\frac{d R_{m}}{d r}\right)_{r=a}=0 \tag{9}
\end{equation*}
$$

Introducing the non-dimensional variable $\tilde{r}=\mu r$, equation (9)becomes

$$
\begin{equation*}
\tilde{r}^{2} \frac{d^{2} R_{m}}{d \tilde{r}^{2}}+\tilde{r} \frac{d R_{m}}{d r}+\left(\tilde{r}^{2}-m^{2}\right) R_{m}=0 \tag{10}
\end{equation*}
$$

We recognize the Bessel equation and since the pressure is finite along the axis $R_{m}=J_{m}(\tilde{r})$. The wall condition (9) implies

$$
\begin{equation*}
J_{m}^{\prime}(\mu a)=0 \tag{11}
\end{equation*}
$$

The boundary-value problem $(10,11)$ is a Sturm-Liouville problem whose solutions form a complete set. The derivative of the Bessel function has an infinite number of zeros which we denote as $\left\{\alpha_{m n}\right\}$,

$$
\begin{equation*}
J_{m}^{\prime}\left(\alpha_{m n}\right)=0, m=0,1, \cdots \tag{12}
\end{equation*}
$$

Hence, the eigenvalues are

$$
\begin{equation*}
\mu_{m n}=\frac{\alpha_{m n}}{a} . \tag{13}
\end{equation*}
$$

This defines the axial wave number as

$$
\begin{equation*}
k_{m n}=\sqrt{\left(\frac{\omega}{c}\right)^{2}-\mu_{m n}^{2}} . \tag{14}
\end{equation*}
$$

The eigenfunction

$$
\begin{equation*}
p_{m n}=J_{m}\left(\frac{\alpha_{m n} r}{a}\right) e^{i\left(k_{m n} x+m \theta-\omega t\right)} \tag{15}
\end{equation*}
$$

is called the $\{m n\}$ mode. For every frequency ω, the solution is then

$$
\begin{equation*}
p_{\omega}=\sum_{m=-\infty}^{m=+\infty} \sum_{n=0}^{n=+\infty} c_{m n} p_{m n} \tag{16}
\end{equation*}
$$

The expression for the coefficients $c_{m n}$ is determined using the initial condition

$$
\begin{equation*}
p_{\omega}(0, r, \theta, t)=f_{\omega}(r, \theta) e^{-i \omega t} \tag{17}
\end{equation*}
$$

and the orthogonality of the Bessel functions,

$$
\begin{equation*}
c_{m n}=\frac{1}{\pi a^{2}} \frac{\alpha_{m n}^{2}}{\left(\alpha_{m n}^{2}-m^{2}\right) J_{m}^{2}\left(\alpha_{m n}\right)} \int_{0}^{2 \pi} \int_{0}^{a} f_{\omega}(r, \theta) J_{m}\left(\alpha_{m n} \frac{r}{a}\right) e^{-i m \theta} r d r d \theta \tag{18}
\end{equation*}
$$

where we have used (see Hildebrand, p. 229)

$$
\begin{equation*}
\int_{0}^{a} r J_{m}^{2}\left(\alpha_{m n} \frac{r}{a}\right) d r=\frac{a^{2}\left(\alpha_{m n}^{2}-m^{2}\right)}{2 \alpha_{m n}^{2}} J_{m}^{2}\left(\alpha_{m n}\right) . \tag{19}
\end{equation*}
$$

Note the condition for propagation of an acoustic mode is that the wave number $k_{m n}$ must be real. Otherwise the wave will decay exponentially and is known as an evanescent wave. Therefore an $\{m n\}$ mode propagates if

$$
\begin{equation*}
\frac{\omega a}{c}>\alpha_{m n} . \tag{20}
\end{equation*}
$$

At low frequencies, only the fundamental mode

$$
\begin{equation*}
p_{00}=e^{i[(\omega / c) x-\omega t]} \tag{21}
\end{equation*}
$$

propagates. As ω increases an additional mode propagates. The frequency at which a mode $\{m n\}$ begins to propagate is known as the cutoff frequency of the mode. As the frequency increases (decreases) and is equal to the cutoff frequency of a mode $\{m n\}$, the mode $\{m n\}$ is said to cut on (cut off).

As an example, consider a duct of radius $a=0.5 \mathrm{~m}, \mathrm{c}=340 \mathrm{~m} / \mathrm{s}$, and the sound frequency is 3000 rpm . $a \omega / c=0.462$. From the tables of zeros of Bessel functions, the lowest zero is $\alpha_{11}=1.8412$. hence only the fundamental mode will propagate.

mathworld

INDEX

Algebra
Applied Mathematics
Calculus and Analysis
Discrete Mathematics
Foundations of Mathematics
Geometry
History and Terminology
Number Theory
Probability and Statistics
Recreational Mathematics
Topology
Alphabetical Index

DESTINATIONS

About MathWorld
About the Author
Headline News (RSS)
New in MathWorld
Math World Classroom
Interactive Entries
Random Entry

CONTACT

Contribute an Entry
Send a Message to the Team

MATHWORLD-IN PRINT

Order book from Amazon

Calculus and Analysis * Special Functions * Bessel Functions *
Calculus and Analysis * Roots *

Bessel Function Zeros

```
COMMENT 諒 DOWNLOAD 
```

The first k roots x_{1}, \ldots, x_{k} of the Bessel function $J_{n}(x)$ are given in the following table. They can be found in Mathematica using the command BesselJZeros [$n, k]$ in the Mathematica add-on package NumericalMath BesselZeros` (which can be loaded with the command <<NumericalMath) .

zero	$J_{0}(x)$	$J_{1}(x)$	$J_{2}(x)$	$J_{3}(x)$	$J_{4}(x)$	$J_{5}(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

The first k roots x_{1}, \ldots, x_{k} of the derivative of the Bessel function $J_{x}^{\prime}(x)$ can be found in Mathematica using the command BesseluPrimezeros $[n, k]$ in the Mathematica add-on package NumericalMath 'Besselzeros (which can be loaded with the command <<NumericalMath '). The first few such roots are given in the following table.

zero	$J_{0}{ }^{\prime}(x)$	$J_{1}^{\prime}(x)$	$J_{2}^{\prime}(x)$	$J_{3}^{\prime}(x)$	$J_{4}{ }^{\prime}(x)$	$J_{5}^{\prime}(x)$
1	3.8317	1.8412	3.0542	4.2012	5.3175	6.4156
2	7.0156	5.3314	6.7061	8.0152	9.2824	10.5199
3	10.1735	8.5363	9.9695	11.3459	12.6819	13.9872
4	13.3237	11.7060	13.1704	14.5858	15.9641	17.3128
5	16.4706	14.8636	16.3475	17.7887	19.1960	20.5755

SEE ALSO: Bessel Function, Bessel Function of the First Kind. [Pages Linking Here]

CITE THIS AS:

Eric W. Weisstein. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BesselFunctionZeros.html

[^0]
[^0]: © 1999-2005 Wolfram Research, Inc. | Terms of Use

