Flow Induced by Vorticity

1 Free-Space Green Function for Laplace Equation

The Green function, $g(\vec{x}, \vec{y})$, is a solution of the equation

$$
\begin{equation*}
\nabla^{2} g(\vec{x}, \vec{y})=-4 \pi \delta(\vec{x}-\vec{y}) \tag{1}
\end{equation*}
$$

where $\delta(\vec{x})$ is the Dirac function. Let $r=|\vec{x}-\vec{y}|$. Then, since g depends only on r, $\nabla^{2} \equiv \frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}$. Equation (1) reduces to

$$
\begin{equation*}
\frac{d^{2} g}{d r^{2}}+\frac{2}{r} \frac{d g}{d r}=0, \quad \text { for } r \neq 0 \tag{2}
\end{equation*}
$$

A solution to (2) is

$$
\begin{equation*}
g(r)=\frac{K}{r}, \tag{3}
\end{equation*}
$$

where K is a constant. We use the divergence theorem to determine K,

$$
\begin{equation*}
\int_{\mathcal{V}} \nabla^{2}\left(\frac{K}{r}\right) d \mathcal{V}=\int_{\Sigma} \nabla\left(\frac{K}{r}\right) \cdot \vec{n} d \Sigma=-K \int_{\Sigma} \frac{(\vec{x}-\vec{y}) \cdot \vec{n}}{|\vec{x}-\vec{y}|^{3}} d \Sigma=-4 K \pi \tag{4}
\end{equation*}
$$

where Σ is a sphere of radius R centered on \vec{y}, and \vec{n} is the outward unit vector normal to Σ. The volume integral of the right hand side of (1) is -4π. Therefore, $K=1$, and we have

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(\vec{x}-\vec{y}) \tag{5}
\end{equation*}
$$

2 Poisson's Equation

Consider the inhomogeneous equation,

$$
\begin{equation*}
\nabla^{2} \vec{V}=-4 \pi \vec{f} \tag{6}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\vec{f}(\vec{x})=\int_{\mathcal{V}} \vec{f}(\vec{y}) \delta(\vec{y}-\vec{x}) d \vec{y} \tag{7}
\end{equation*}
$$

and using (5) for every component of \vec{f}, we get

$$
\begin{equation*}
V \overrightarrow{(\vec{x})}=\int_{\mathcal{V}} \frac{\vec{f}(\vec{y})}{|\vec{x}-\vec{y}|} d \vec{y} \tag{8}
\end{equation*}
$$

Taking the curl of (8)

$$
\begin{equation*}
\nabla \times V \overrightarrow{(\vec{x}})=\int_{\mathcal{V}} \nabla\left(\frac{1}{r}\right) \times \vec{f}(\vec{y}) d \vec{y} \tag{9}
\end{equation*}
$$

3 Velocity in Terms of the Vorticity

Consider the solution to Poisson's equation

$$
\begin{equation*}
\nabla^{2} \vec{A}=-\vec{V} . \tag{10}
\end{equation*}
$$

Taking the curl of both sides of (10), we get

$$
\begin{equation*}
\nabla^{2}(\nabla \times \vec{A})=-\vec{\zeta} \tag{11}
\end{equation*}
$$

where $\vec{\zeta}=\nabla \times \vec{V}$. A solution to (11) is

$$
\begin{equation*}
(\nabla \times \vec{A})=\frac{1}{4 \pi} \int_{\mathcal{V}} \frac{\vec{\zeta}(\vec{y})}{|\vec{x}-\vec{y}|} d \vec{y} \tag{12}
\end{equation*}
$$

Taking the curl of both sides of (12), we get

$$
\begin{equation*}
\nabla \times(\nabla \times \vec{A})=\frac{1}{4 \pi} \int_{\mathcal{V}} \nabla_{\vec{x}}\left(\frac{1}{|\vec{x}-\vec{y}|}\right) \times \vec{\zeta} d \vec{y} . \tag{13}
\end{equation*}
$$

We recall the mathematical identity,

$$
\begin{equation*}
\nabla \times(\nabla \times \vec{A}) \equiv \nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A} \tag{14}
\end{equation*}
$$

If we further assume that \vec{A} is solenoidal, i.e., $\nabla \cdot \vec{A}=0$, then \vec{V} is also solenoidal, i.e., $\nabla \cdot \vec{V}=0$. In this case (14) reduces to

$$
\begin{equation*}
\nabla \times(\nabla \times \vec{A}) \equiv-\nabla^{2} \vec{A}=\vec{V} . \tag{15}
\end{equation*}
$$

Substituting this result into (13), we get

$$
\begin{equation*}
\vec{V}=\frac{1}{4 \pi} \int_{\mathcal{V}} \nabla_{\vec{x}}\left(\frac{1}{|\vec{x}-\vec{y}|}\right) \times \vec{\zeta} d \vec{y} . \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\vec{V}=\frac{1}{4 \pi} \int_{\mathcal{V}} \frac{\vec{\zeta} \times(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{3}} d \vec{y} \tag{17}
\end{equation*}
$$

This formula for the induced velocity corresponds exactly to the formula of Biot and Savart for the magnetic field induced by a current. The elementary velocity induced by the vorticity in the element of volume $d \vec{y}$ is

$$
\begin{equation*}
d \vec{V}=\frac{1}{4 \pi} \frac{(\vec{\zeta} d \vec{y}) \times(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{3}} . \tag{18}
\end{equation*}
$$

4 Vorticity Concentrated in a Vortex Filament

We now consider a vortex filament \mathcal{C}. Let σ be the infinitesimal cross-section of the filament orthogonal to the vorticity $\vec{\zeta}$. Since $\nabla \cdot \vec{\zeta}=0,|\vec{\zeta}| \sigma=$ constant along the filament. Moreover, Stokes theorem states that the circulation, Γ, around a circuit surrounding the filament is equal to the flux of the vorticity, i.e.,

$$
\begin{equation*}
\Gamma=\zeta \sigma \tag{19}
\end{equation*}
$$

Let $\overrightarrow{d s}$ be the elemental arc in the $\vec{\zeta}$ direction, then (18) becomes

$$
\begin{equation*}
d \vec{V}=\frac{\sigma}{4 \pi} \frac{\overrightarrow{d s} \times(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{3}} \tag{20}
\end{equation*}
$$

and the total induced velocity

$$
\begin{equation*}
\vec{V}=\frac{\sigma}{4 \pi} \int_{\mathcal{C}} \frac{\overrightarrow{d s} \times(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{3}} \tag{21}
\end{equation*}
$$

If $\vec{\tau}=\vec{\zeta} /|\vec{\zeta}|$, then $\overrightarrow{d s}=\vec{\tau} d s$, and we have

$$
\begin{equation*}
\vec{V}=\frac{\sigma}{4 \pi} \int_{\mathcal{C}} \frac{\vec{\tau} \times(\vec{x}-\vec{y})}{|\vec{x}-\vec{y}|^{3}} d s \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
\vec{V}=\frac{\sigma}{4 \pi} \int_{\mathcal{C}} \vec{\tau} \times \nabla_{\vec{y}}\left(\frac{1}{|\vec{x}-\vec{y}|}\right) d s \tag{23}
\end{equation*}
$$

