FINITE WING THEORY

Consider a wing in a uniform upstream flow, V and let the y_{0}-axis be the axis along the span centered at the wing root. and let $c\left(y_{0}\right)$ be the chord length. We define the lift per unit span, $L^{\prime}\left(y_{0}\right)$, as that of an infinite span wing whose geometry and angle of attack to the mean flow are those of the wing at y_{0}. The corresponding lift coefficient is

$$
\begin{equation*}
c_{\ell}=\frac{L^{\prime}\left(y_{0}\right)}{\frac{1}{2} \rho V^{2} c\left(y_{0}\right)}, \tag{1}
\end{equation*}
$$

where $c\left(y_{0}\right)$ is the wing chord length at y_{0}. Using the theorem of Kutta-Joukowski, $L^{\prime}\left(y_{0}\right)=\rho V \Gamma\left(y_{0}\right)$, we rewrite (1) as

$$
\begin{equation*}
c_{\ell}=\frac{2 \Gamma\left(y_{0}\right)}{V c\left(y_{0}\right)} . \tag{2}
\end{equation*}
$$

The expression for c_{ℓ} can also be written in terms of the effective angle of attack $\alpha_{e f f}=$ $\alpha-\alpha_{i}$,

$$
\begin{equation*}
c_{\ell}=a_{0}\left(\alpha-\alpha_{L=0}-\alpha_{i}\right), \tag{3}
\end{equation*}
$$

where the induced angle of attack α_{i} is calculated using the Biot-Savart law,

$$
\begin{equation*}
\alpha_{i}=\frac{1}{4 \pi V_{\infty}} \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{\frac{d \Gamma}{d y}}{y_{0}-y} d y \tag{4}
\end{equation*}
$$

a_{0} is a constant. For a thin airfoil, $a_{0}=2 \pi$.
At every positition y_{0} along the span, we can then write

$$
\begin{equation*}
\alpha\left(y_{0}\right)-\alpha_{L=0}\left(y_{0}\right)-\alpha_{i}\left(y_{0}\right)=\frac{2 \Gamma\left(y_{0}\right)}{a_{0} V c\left(y_{0}\right)} . \tag{5}
\end{equation*}
$$

Note that $\bar{\alpha}\left(y_{0}\right)=\alpha\left(y_{0}\right)-\alpha_{L=0}\left(y_{0}\right)$ is determined by the wing geometry and angle of attack. Substituting the expression (4) for α_{i} in (5) gives the fundamental equation of the finite wing theory,

$$
\begin{equation*}
\bar{\alpha}\left(y_{0}\right)=\frac{2 \Gamma\left(y_{0}\right)}{a_{0} V c\left(y_{0}\right)}+\frac{1}{4 \pi V} \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{\frac{d \Gamma}{d y}}{y_{0}-y} d y . \tag{6}
\end{equation*}
$$

The integral in (6) should be understood as a Cauchy principal value.
We note that wings are symmetric, i.e., .
We introduce the transformation

$$
\begin{align*}
y_{0} & =-\frac{b}{2} \cos \theta_{0} \tag{7}\\
y & =-\frac{b}{2} \cos \theta \tag{8}
\end{align*}
$$

Equation(6) can then be rewritten as

$$
\begin{equation*}
\bar{\alpha}\left(\theta_{0}\right)=\frac{2 \Gamma\left(\theta_{0}\right)}{a_{0} V_{\infty} c\left(\theta_{0}\right)}+\frac{1}{2 \pi V_{\infty} b} \int_{0}^{\pi} \frac{\frac{d \Gamma}{d \theta}}{\cos \theta-\cos \theta_{0}} d \theta . \tag{9}
\end{equation*}
$$

We note that $\Gamma\left(y_{0}\right)$ vanishes at both ends of the wing. Moreover, we assume the wing to be symmetric, i.e., $\Gamma\left(-y_{0}\right)=\Gamma\left(y_{0}\right)$. This suggests the following expansion for Γ :

$$
\begin{equation*}
\Gamma(\theta)=2 b V \sum_{1}^{N} A_{n} \operatorname{sinn} \theta \tag{10}
\end{equation*}
$$

$A_{1}, A_{2}, \ldots, A_{N}$ are constants to be determined. The condition of wing symmetry, $\Gamma(\pi-\theta)=\Gamma(\theta)$, implies $A_{n}=0$ for even n .

We note that

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\operatorname{cosn} \theta}{\cos \theta-\cos \theta_{0}} d \theta=\pi \frac{\operatorname{sinn} \theta_{0}}{\sin \theta_{0}} \tag{11}
\end{equation*}
$$

Substituting (10) into (4 and 9) and using (11), we obtain the following expressions for the induced angle of attack

$$
\begin{equation*}
\alpha_{i}\left(\theta_{0}\right)=\sum_{1}^{N} n A_{n} \frac{\operatorname{sinn} \theta_{0}}{\sin \theta_{0}} \tag{12}
\end{equation*}
$$

and the fundamental equation (9) for the finite wing becomes

$$
\begin{equation*}
\bar{\alpha}\left(\theta_{0}\right)=\frac{4 b}{a_{0} c\left(\theta_{0}\right)} \sum_{1}^{N} A_{n} \operatorname{sinn} \theta_{0}+\sum_{1}^{N} n A_{n} \frac{\operatorname{sinn} \theta_{0}}{\sin \theta_{0}} \tag{13}
\end{equation*}
$$

Equation (5) must be satisfied at N locations of the span. This gives N equations for determining $A_{1}, A_{3}, \ldots, A_{N}$. The expressions for the wing lift, L, and induced drag, D_{i}, are readily obtained in terms of Γ,

$$
\begin{align*}
L & =\rho V \int_{-\frac{b}{2}}^{\frac{b}{2}} \Gamma\left(y_{0}\right) d y_{0} \tag{14}\\
D_{i} & =\rho V \int_{-\frac{b}{2}}^{\frac{b}{2}} \alpha_{i} \Gamma\left(y_{0}\right) d y_{0} \tag{15}
\end{align*}
$$

We define the wing lift and induced drag coefficients as follows

$$
\begin{align*}
C_{L} & =\frac{L}{\frac{1}{2} \rho V^{2} S} \tag{16}\\
C_{D, i} & =\frac{D_{i}}{\frac{1}{2} \rho V^{2} S} \tag{17}
\end{align*}
$$

This gives :

$$
\begin{align*}
C_{L} & =\pi \mathcal{A} \mathcal{R} A_{1} \tag{18}\\
C_{D, i} & =\pi \mathcal{A} \mathcal{R} A_{1}^{2}\left[1+\sum_{2}^{N} n\left(\frac{A_{n}}{A_{1}}\right)^{2}\right] \tag{19}
\end{align*}
$$

which is commonly cast as

$$
\begin{equation*}
C_{D, i}=\frac{C_{L}^{2}}{\pi \mathcal{A R}}(1+\delta) . \tag{20}
\end{equation*}
$$

For a wing with no geometric twist

$$
\begin{array}{r}
C_{L}=a\left(\alpha-\alpha_{L=0}\right) \\
a=\frac{a_{0}}{1+\left(\frac{a_{0}}{\pi \mathcal{A R}}\right)(1+\tau)}
\end{array}
$$

For a thin airfoil, $a_{0}=2 \pi$.

ELLIPTIC WING

For a wing of uniform cross-section and no geometric twist, $\bar{\alpha}(\theta)$ is constant. We further assume the wing to have an elliptic planform, i.e.,

$$
c=c_{0} \sqrt{1-\left(\frac{2 y}{b}\right)^{2}} \quad \text { or } c(\theta)=c_{0} \sin \theta
$$

Substituting (11) into (5), we find the following solution

$$
\begin{aligned}
A_{1}=\frac{\bar{\alpha}}{1+\frac{4 b}{a_{0} c_{0}}} & =\frac{\bar{\alpha}}{1+\frac{\pi \mathcal{A R}}{a_{0}}} \\
A_{2}=A_{3}, \ldots, & =A_{N}=0 .
\end{aligned}
$$

All aerodynamic quantities can now be calculated :

$$
\begin{gathered}
\Gamma(\theta)=2 b V_{\infty} \frac{\bar{\alpha}}{1+\frac{\pi \mathcal{A R}}{a_{0}}} \sin \theta \\
\alpha_{i}=A_{1}=\frac{\bar{\alpha}}{1+\frac{\pi \mathcal{A R}}{a_{0}}}
\end{gathered}
$$

$$
\begin{array}{r}
C_{L}=\pi \mathcal{A R} \alpha_{i}=\frac{a_{0} \bar{\alpha}}{1+\frac{a_{0}}{\pi \mathcal{A R}}} \\
C_{D, i}=\frac{C_{L}^{2}}{\pi \mathcal{A R}} \\
a=\frac{a_{0}}{1+\frac{a_{0}}{\pi \mathcal{A R}}}
\end{array}
$$

