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Compressibility Effects on Airfoil Lift

The Prandtl-Glauert rule gives
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1−M2∞
(1)
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The Karman-Tsien rule gives
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, (4)

and the Laitone’s rule states
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)
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Figure 1: Comparison of measured lift-curve slopw for NACA 4412 profile with Prandtl-
Glauert rule.

Figure 2: Comparison of measured lift-curve slopw for a propeller section of 6% thickness
with Prandtl-Glauert rule.
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Figure 3: Compressibility corrections for Cp compared with experimental results for a
NACA 4412 airfoil at an angle of attack of α = 1o53

′
. Cp is measured at 0.30-chord

location.

Figure 4: Flow past a circular arc profile.

(a) Streamlines.
(b) Effect of M∞ on lift coefficient.
(c)Low critical Mach number as a function of camber.
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Figure 5: The Critical Mach number. Point A is the location of minimum pressure
(maximum velocity) on the top surface of the airfoil
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Figure 6: Determination of the critical Mach number.

(B) Cp.
(C) Cp,cr.
(D)Intersection gives critical Mach number.
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Figure 7: Effect of airfoil thickness on critical Mach number.
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Figure 8: Sketch of the variation of profile drag coefficient with free-stream Mach num-
ber, illustrating the critical and drag-divergence Mach numbers and showing the large
drag rise near Mach 1.
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Figure 9: NACA 64-series airfoil compared with a supercritical airfoil at cruise condi-
tions.
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Figure 10: The drag-divergence properties of a standard NACA 64-series airfoil and a
supercritical airfoil.
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