Acoustic Waves in a Duct

1 One-Dimensional Waves

The one-dimensional wave approximation is valid when the wavelength A is much larger than
the diameter of the duct D,
A>D.

The acoustic pressure disturbance p’ is then governed by
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where c is the speed of sound. In air at 293°K, ¢ = 343m/s. The general solution of (1) is

of the form
p’(:v,t)Zf(t—i) +g<t+i> (2)

For harmonic waves, the general solution is of the form
p’(:l:, t) _ Ae—iw(t—%) + Be—iw(t-&—%)' (3)

In order to determine a particular solution to (1), we need to specify the initial and boundary
conditions associated with a real problem. For example, let us consider a piston located at
x = 0 in a semi-infinite duct as shown in Figure 1.
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Figure 1: One-Dimensional Wave Propagation in a Duct

At time t = 0, the piston begins to oscillate about its mean position with a speed U(t).
Since the duct extends from 0 to oo, the physical principle of causality tells us that all waves
must propagate from the source of sound outward, i.e., from the piston to the right. This is
equivalent to a homogeneous boundary condition imposed at infinity. As a result,

g<t+x> =0.
c

The fluid velocity wu is related to the acoustic pressure p’ by the momentum equation
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This gives



w(a 1) = plzt) 1 s (t B ﬂcs) (4)

We now apply the boundary condition at x = 0,

1
u(t,0) =U(t) = pocf(t) for ¢ >0.

and solving for f gives

f(t—x>:ch<t—x> for tzg.
c c c

Note that the initial condition u(0,z) = 0 for = > 0 implies that the sound produced by
the oscillation of the piston will not reach locations x > c¢t. This is equivalent to taking
U()=0 for t<O.

Substituting the expression of f into Equation (4) gives

p’:ch(t—x>.
c

Note that if the piston has been oscillating for a very long time, we can take the initial time
at —oo instead of 0. In this case U(t) can be defined for all t. This is the case for harmonic
oscillations where U(t) = Ae™**. The solution takes the form

p/ _ Apcefiw@f%)?

where A is the wave amplitude. Such a wave is called a plane wave since its phase is constant
in a plane perpendicular to the x-axis. The physical solution is the real part (or the imaginary
part) of this solution,

p = Apccos {w (t - %)} (5)

Note that v = p’/(pc). The acoustic intensity

I = p'v = A?pccos®w(t — %c)} (6)

The average intensity I and acoustic power P can then readily calculated
I = ;AQpc (7)
P = ;A2pcS, (8)

where S is the duct cross section.



The following parameters are usually used to describe harmonic waves.

Circular Frequency: w=2rf [Radians per second] (9)
Frequency: f= 23 [Hertz=cycles per second] (10)
T
1 2
Period: T = 7 g [Seconds] (11)
2
Wavelength: A= ¢ (12)
w
2
Wave Number: =2 = 77? (13)
c
Phase Speed: c= % (14)
(15)
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Figure 2: Wave Propagation in a Rectangular Duct

A schematic of the duct is shown in Figure 2. The governing equation for the acoustic
pressure is similar to that of the one-dimensional case,
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The rigid walls assumption gives the boundary condition %—Z = 0. We use the method of
separation of variables to find a time-harmonic solution to this problem. Thus we assume a
solution of the form

P&, t) = f(z1) gw2) h(zs) T(t) (17)
Substituting (17) into (16) gives

1 T// f// g// hl/

——————— — =0. 18
T f g h (18)
If the oscillation frequency is w, then
" .
? _ _wg — T(t) — ezwt'



We could have considered a solution of the form e~*?. This would give the complex conju-

gate of the solution obtained with e**!. This, however,does not affect the physical solution
which is the real part of the mathematical solution.

Substituting the expression for 7" into (18) gives

= —a = g(xe) = Ay cos(axa) + By sin(axs)
= 5 — h(z3) = Cy cos(fz3) + Dy sin(fz3)

Applying the boundary condition at xo = {0,a} and z3 = {0,b} gives:

By =0, aa = mm,
D, =0, Bb = nm,
and
mm nm
g(w2) = Aj cos (:Uz) , h(z3) = C cos (bxg) ,
a

where m and n are integers. Finally, we have
1 w? mm\ 2 nm\ 2
)
f c? a b
f(z1) = Bye "mn®1 4 pyethmnet
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Since we have assumed w > o, and we are considering acoustic waves propagating to the

right, if we take
w? mm\ 2 nm\ 2
p— —_— -_— — 1
K \/02 <a) (b)’ (19)

then F; = 0. Equation (19) which gives the wave number k,,,, in terms of the frequency w is
known as the dispersion equation. From the solutions for 7', f, g, and h, and taking F} =1,

giving,

where k,,, is defined as

we have the solution

Pron (T, 1) = cos (mW@) cos (m;@) eilkmnz1—wt) (20)

a



p,. is referred to as the (m,n) mode. The velocity in the z; direction is

Pnn
Vimn = Zmn’ (21>
where the impedance
Lo = ~ (22)

Y-z - )

The general solution is of the form

m=00 N=00

= 2 D GmnPhn(T1) (23)

m=0 n=0
where a,,, are constants to be determined from the boundary conditions at xy = 0. If
for example the acoustic waves are caused by the oscillations of a membrane described by
Ui (o, x3)exp(—iwt), with the following Fourier ewxpansion

1 (2, x3) Z Z by, COS ( aflfz) cos <n2x2> , (24)

m=0 n=0

then
Amn = Orn Zmn.- (25)

When .
2 2
w<el(= =)+ ()]
kmn is purely imaginary and the amplitude of the wave would either increase or decrease
exponentially. Since growing waves are unacceptable physically, the waves will decay ex-
ponentially. These waves are called evanescent waves. As w increases a new {m,n} mode
begins to propagate or is said to cut on. Thus at a given frequency w, once the transients

represented by the evanescent modes decay, the solution will have only a finite number of
propagating modes.

Note that the dispersion equation is not linear, i.e., k,,, is not a linear function of w. The
axial phase speed, ¢, = %~ > c and depends on w. Waves with different frequencies have
different phase speeds and as a result the waves disperse as they propagate. Such waves are
called dispersive waves. The energy of dispersive waves propagate with the group velocity
cg defined as

dw okmn €

Cg=— =2C = —<ec.
9 dk w Cp

If we assume for simplicity that a = b. Then

w? w2
K = 2 (m? +n2) (26)

1
Only waves where w > 7T§(m2 +n?)2 will propagate. Introducing the wave length \ = @

gives the following condition for a wave to propagate,



1

a > ;\(mz +n2>2.

If a < %, only the (0,0) mode corresponding to a plane wave propagates in the duct. The

higher order modes (m > 0,n > 0) are cut-off. Thus if the duct diameter is much smaller than

the wavelength the problem is reduced to that of the one-dimensional wave approximation.

This result justifies the one-dimensional approximation for ducts with a diameter small
compared to the wavelength.



