
Acoustic Waves in a Duct

1 One-Dimensional Waves

The one-dimensional wave approximation is valid when the wavelength λ is much larger than
the diameter of the duct D,

λ À D.

The acoustic pressure disturbance p′ is then governed by

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
= 0, (1)

where c is the speed of sound. In air at 293oK, c = 343m/s. The general solution of (1) is
of the form

p′(x, t) = f
(
t− x

c

)
+ g

(
t +

x

c

)
(2)

For harmonic waves, the general solution is of the form

p′(x, t) = Ae−iω(t−x
c ) + Be−iω(t+x

c ). (3)

In order to determine a particular solution to (1), we need to specify the initial and boundary
conditions associated with a real problem. For example, let us consider a piston located at
x = 0 in a semi-infinite duct as shown in Figure 1.

Figure 1: One-Dimensional Wave Propagation in a Duct

At time t = 0, the piston begins to oscillate about its mean position with a speed U(t).
Since the duct extends from 0 to ∞, the physical principle of causality tells us that all waves
must propagate from the source of sound outward, i.e., from the piston to the right. This is
equivalent to a homogeneous boundary condition imposed at infinity. As a result,

g
(
t +

x

c

)
≡ 0.

The fluid velocity u is related to the acoustic pressure p′ by the momentum equation

∂u

∂t
= −1

ρ

∂p′

∂x

This gives
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u(x, t) =
p′(x, t)

ρc
=

1

ρc
f

(
t− x

c

)
(4)

We now apply the boundary condition at x = 0,

u(t, 0) = U(t) =
1

ρoc
f(t) for t ≥ 0.

and solving for f gives

f
(
t− x

c

)
= ρc U

(
t− x

c

)
for t ≥ x

c
.

Note that the initial condition u(0, x) = 0 for x > 0 implies that the sound produced by
the oscillation of the piston will not reach locations x > ct. This is equivalent to taking
U(t) ≡ 0 for t < 0.
Substituting the expression of f into Equation (4) gives

p′ = ρc U
(
t− x

c

)
.

Note that if the piston has been oscillating for a very long time, we can take the initial time
at −∞ instead of 0. In this case U(t) can be defined for all t. This is the case for harmonic
oscillations where U(t) = Ae−iωt. The solution takes the form

p′ = Aρce−iω(t−x
c ),

where A is the wave amplitude. Such a wave is called a plane wave since its phase is constant
in a plane perpendicular to the x-axis. The physical solution is the real part (or the imaginary
part) of this solution,

p′ = Aρc cos
[
ω

(
t− x

c

)]
(5)

Note that v = p′/(ρc). The acoustic intensity

I = p′v = A2ρccos2[ω(t− x

c
c)]. (6)

The average intensity Ī and acoustic power P can then readily calculated

Ī =
1

2
A2ρc (7)

P =
1

2
A2ρcS, (8)

where S is the duct cross section.
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The following parameters are usually used to describe harmonic waves.

Circular Frequency: ω = 2πf [Radians per second] (9)

Frequency: f =
ω

2π
[Hertz=cycles per second] (10)

Period: T =
1

f
=

2π

ω
[Seconds] (11)

Wavelength: λ =
2πc

ω
(12)

Wave Number: k =
ω

c
=

2π

λ
(13)

Phase Speed: c =
ω

k
. (14)

(15)

2 Rectangular Duct with Rigid Boundaries

Figure 2: Wave Propagation in a Rectangular Duct

A schematic of the duct is shown in Figure 2. The governing equation for the acoustic
pressure is similar to that of the one-dimensional case,

1

c2

∂2p′

∂t2
−∇2p′ = 0. (16)

The rigid walls assumption gives the boundary condition ∂p′
∂n

= 0. We use the method of
separation of variables to find a time-harmonic solution to this problem. Thus we assume a
solution of the form

p′(~x, t) = f(x1) g(x2) h(x3) T (t) (17)

Substituting (17) into (16) gives

1

c2

T ′′

T
− f ′′

f
− g′′

g
− h′′

h
= 0. (18)

If the oscillation frequency is ω, then

T ′′

T
= −ω2 =⇒ T (t) = eiωt.
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We could have considered a solution of the form e−iωt. This would give the complex conju-
gate of the solution obtained with eiωt. This, however,does not affect the physical solution
which is the real part of the mathematical solution.

Substituting the expression for T into (18) gives

f ′′

f
+

g′′

g
+

h′′

h
= −ω2

c2

If we assign g′′
g

and h′′
h

to be constant, we obtain

g′′

g
= −α2 =⇒ g(x2) = A1 cos(αx2) + B1 sin(αx2)

h′′

h
= −β2 =⇒ h(x3) = C1 cos(βx3) + D1 sin(βx3)

Applying the boundary condition at x2 = {0, a} and x3 = {0, b} gives:

B1 = 0, αa = mπ,

D1 = 0, βb = nπ,

and

g(x2) = A1 cos
(

mπ

a
x2

)
, h(x3) = C1 cos

(
nπ

b
x3

)
,

where m and n are integers. Finally, we have

f ′′

f
= −ω2

c2
+

(
mπ

a

)2

+
(

nπ

b

)2

giving,
f(x1) = E1e

−ikmnx1 + F1e
ikmnx1 ,

where kmn is defined as

k2
mn =

ω2

c2
−

(
mπ

a

)2

−
(

nπ

b

)2

Since we have assumed ω > o, and we are considering acoustic waves propagating to the
right, if we take

kmn =

√
ω2

c2
−

(
mπ

a

)2

−
(

nπ

b

)2

, (19)

then E1 = 0. Equation (19) which gives the wave number kmn in terms of the frequency ω is
known as the dispersion equation. From the solutions for T , f , g, and h, and taking F1 = 1,

we have the solution

p′mn(~x, t) = cos
(

mπx2

a

)
cos

(
nπx2

b

)
ei(kmnx1−ωt). (20)
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p
′
mn is referred to as the (m,n) mode. The velocity in the x1 direction is

v1mn =
p′mn

Zmn

, (21)

where the impedance

Zmn =
ρc√

1− (mπc
aω

)2 − (nπc
bω

)2
. (22)

The general solution is of the form

p′(~x, t) =
m=∞∑

m=0

n=∞∑

n=0

amnp
′
mn(~x, t) (23)

where amn are constants to be determined from the boundary conditions at x1 = 0. If
for example the acoustic waves are caused by the oscillations of a membrane described by
U1(x2, x3)exp(−iωt), with the following Fourier ewxpansion

U1(x2, x3) =
m=∞∑

m=0

n=∞∑

n=0

bmn cos
(

mπx2

a

)
cos

(
nπx2

b

)
, (24)

then
amn = bmnZmn. (25)

When
ω < c[(

mπ

a
)2 + (

nπ

b
)2]

kmn is purely imaginary and the amplitude of the wave would either increase or decrease
exponentially. Since growing waves are unacceptable physically, the waves will decay ex-
ponentially. These waves are called evanescent waves. As ω increases a new {m,n} mode
begins to propagate or is said to cut on. Thus at a given frequency ω, once the transients
represented by the evanescent modes decay, the solution will have only a finite number of
propagating modes.

Note that the dispersion equation is not linear, i.e., kmn is not a linear function of ω. The
axial phase speed, cp = ω

kmn
> c and depends on ω. Waves with different frequencies have

different phase speeds and as a result the waves disperse as they propagate. Such waves are
called dispersive waves. The energy of dispersive waves propagate with the group velocity
cg defined as

cg =
dω

dk
= c2kmn

ω
=

c2

cp

< c.

If we assume for simplicity that a = b. Then

kmn =

√
ω2

c2
− π2

a2
(m2 + n2) (26)

Only waves where ω > π c
a
(m2 + n2)

1
2 will propagate. Introducing the wave length λ = 2πc

ω
,

gives the following condition for a wave to propagate,

5



a >
λ

2

(
m2 + n2

) 1
2 .

If a < λ
2
, only the (0,0) mode corresponding to a plane wave propagates in the duct. The

higher order modes (m > 0, n > 0) are cut-off. Thus if the duct diameter is much smaller than
the wavelength the problem is reduced to that of the one-dimensional wave approximation.
This result justifies the one-dimensional approximation for ducts with a diameter small
compared to the wavelength.
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