UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

 $Professor \ Atassi$

AME-538

1 The Buckingham Π -Theorem

Let

$$a = f(a_1, a_2, \dots, a_k, a_{k+1}, \dots, a_n)$$
(1)

where $a_1, a_2, ..., a_k$ have independent dimensions, and $a_{k+1}, a_{k+2}, ..., a_n$ are expressible in terms of the dimensions of $a_1, a_2, ..., a_k$, as follows

$$[a_{k+1}] = [a_1]^{p_{k+1}} \cdots [a_k]^{r_{k+1}}$$

$$[a_n] = [a_1]^{p_n} \cdots [a_k]^{r_n}$$

$$[a] = [a_1]^p \cdots [a_k]^r$$
(2)

Define

Substituting equation (1) for a, we get

$$\Pi = \frac{f(a_1, a_2, \dots, a_k, a_{k+1}, \dots, a_n)}{a_1^p \cdots a_k^r}$$

Using equations (3) to express $a_{k+1}, a_{k+2}, ..., a_n$, we get

$$\Pi = \frac{f(a_1, a_2, \dots, a_k, \Pi_1 a_1^{p_{k+1}} \cdots a_k^{r_{k+1}}, \dots, \Pi_{n-k} a_1^{p_n} \cdots a_k^{r_n})}{a_1^p \cdots a_k^r}$$

Or,

$$\Pi = F(a_1, a_2, \dots, a_k, \Pi_1, \Pi_2, \Pi_{n-k})$$
(4)

If we change the system of units in which $a_1, a_2, ..., a_k$ are expressed, Π does not change. Therefore,

$$\frac{\partial \Pi}{\partial a_1} = 0, \ \frac{\partial \Pi}{\partial a_2} = 0, \dots, \ \frac{\partial \Pi}{\partial a_k} = 0$$

The function Π is thus independent of $a_1, a_2, ..., a_k$, and as a result, equation (4) reduces to

$$\Pi = \Phi(\Pi_1, \Pi_2, ..., \Pi_{n-k}) \tag{5}$$

The above result can be summarized with the followin theorem.

Theorem :

Let a be a quantity dependent on n physical variables. If k is the number of independent dimensions, then the dimensionless dependent variable corresponding to a can be expressed in terms of only n-k dimensionless variables.

In *Fluid Mechanics*, there are only three independent dimensions, mass (M), length (L) and time (T). Thus, k = 3. In most problems, the physical variables are the density (ρ) , the velocity (V), the body length $(\ell, \text{ or c})$, the viscosity (μ) and the speed of sound (a). Thus, n = 5. Dimensionless dependent variables, therefore, can be expressed in terms of only 2 dimensioless variables. The two dimensionless variables are

and

the Reynolds number :
$$Re = \frac{\rho V \ell}{\mu}$$

the Mach number : $M = \frac{V}{\mu}$

The quantities used to define these variables are usually evaluated at upstream conditions denoted with the subscript ∞ .

The lift, drag, normal and axial forces are nondimensionlized with respect to the dynamic head, $q_{\infty} = \frac{1}{2}\rho_{\infty}V_{\infty}^2$, times the area S. Hence, the lift and drag coefficients, for example, can be expressed as functions of Re and M

$$C_L = F(Re, M)$$

 $C_D = G(Re, M)$

For flows which may be considered incompressible, M < .3, C_L and C_D depend only on the Reynolds number.

$$C_L = F(Re)$$
$$C_D = G(Re)$$

2 Flow Similarity

Two flows over two two different bodies are said to be dynamically similar if

- 1. The streamline patterns are geometrically similar.
- 2. The ratios $\frac{V_1}{V_2}$, $\frac{\rho_1}{rho_2}$, $\frac{p_1}{p_2}$, $\frac{T_1}{T_2}$, etc. are the same throughout the flowfield at geometrically similar points. The subscripts 1 and 2 denote quantities of flow 1 and 2, respectively.

Corollary: If two flows are dynamically similar their force coefficients are the same.

Criteria for Similarity:

- 1. Geometrically similar bodies.
- 2. Identical initial flow conditions.
- 3. Similarity parameters are the same.