The Acoustic Problem for a Linear Cascade

Figure 1: Linear Cascade in a Uniform Flow

Consider a linear cascade of blades with spacing S. Let (x, y, z) be a coordinate system with the axis x in the direction of the machine axis and z in the span direction. The upstream velocity $\vec{U}=U \vec{e}_{x}$ makes the angle α with the x axis. The spacing is defined by,

$$
\begin{equation*}
\vec{S}=S \vec{e}_{y}=S\left(\sin \alpha \vec{E}_{x}+\cos \alpha \vec{E}_{y}\right) \tag{1}
\end{equation*}
$$

A plane wave,

$$
\begin{equation*}
\phi=e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{2}
\end{equation*}
$$

is propagating in the \vec{k} direction: $\vec{k}=\left\{k_{x}, k_{y}, k_{z}\right\}$ in the e frame.
ϕ must satisfy the wave equation,

$$
\begin{equation*}
\left(\frac{1}{c_{o}^{2}} \frac{D_{o}^{2}}{D t^{2}}-\nabla^{2}\right) \phi=0 \tag{3}
\end{equation*}
$$

This implies that,

$$
\begin{equation*}
\vec{k}^{2}-\frac{1}{c_{o}^{2}}(\vec{k} \cdot \vec{U}-\omega)^{2}=0 \tag{4}
\end{equation*}
$$

In addition, we impose a quasiperiodicity condition,

$$
\begin{equation*}
k_{y} S=\sigma-2 n \pi \tag{5}
\end{equation*}
$$

where σ is the interblade phase angle.
Expanding (4),

$$
\begin{equation*}
k_{x}^{2}\left(1-M_{x}^{2}\right)+2 k_{x} M_{x}\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)+k_{y}^{2}+k_{z}^{2}-\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}=0 \tag{6}
\end{equation*}
$$

For a propagating wave k_{x} must be real,

$$
\begin{equation*}
M_{x}^{2}\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}+\left(1-M_{x}^{2}\right)\left[\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-k_{y}^{2}-k_{z}^{2}\right]>0 \tag{7}
\end{equation*}
$$

Or,

$$
\begin{gather*}
\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\left(1-M_{x}^{2}\right)\left(k_{y}^{2}+k_{z}^{2}\right)>0 \tag{8}\\
k_{x}=\frac{-M_{x}\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right) \pm \sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\left(1-M_{x}^{2}\right)\left(k_{y}^{2}+k_{z}^{2}\right)}}{\left(1-M_{x}^{2}\right)} \tag{9}
\end{gather*}
$$

Note that for a given interblade phase angle σ, k_{y} is given by (5). Thus, we have propagating modes $k_{x}^{(n)}$ where n is determined by the inequality (8).

Let us examine the condition for a mode (n) to propagate, to this end we consider two important cases. For the first case we assume σ to be constant and independent of ω as in the case of a flutter. In the second case, we consider the acoustics radiated in response to a gust.

$1 \sigma=$ constant

a. if $\frac{\omega}{c_{o}}>k_{y} M_{y}$, then

$$
\begin{equation*}
\frac{\omega}{c_{o}}>k_{y} M_{y}+\sqrt{\left(1-M_{x}^{2}\right)\left(k_{y}^{2}+k_{z}^{2}\right)} \tag{10}
\end{equation*}
$$

b. If $\frac{\omega}{c_{o}}<k_{y} M_{y}$, then

$$
\begin{equation*}
\frac{\omega}{c_{o}}<k_{y} M_{y}-\sqrt{\left(1-M_{x}^{2}\right)\left(k_{y}^{2}+k_{z}^{2}\right)} \tag{11}
\end{equation*}
$$

However, $k_{y} M_{y}$ is always less than $\sqrt{\left(1-M_{x}^{2}\right) k_{y}^{2}}$ since,

$$
\begin{equation*}
k_{y}^{2} M_{y}^{2}<\left(1-M_{x}^{2}\right) k_{y}^{2} \tag{12}
\end{equation*}
$$

as $\left.\left[1-\left(M_{x}^{2}+M_{y}^{2}\right)\right)\right] k_{y}^{2}>0$. This implies that the r.h.s. is negative, and that the above condition requires $\frac{\omega}{c_{o}}<0$ which is not possible.

Therefore, for $\sigma=$ constant, the condition for a mode to exist is,

$$
\begin{equation*}
\frac{\omega}{c_{o}}>k_{y} M_{y}+\sqrt{\left(1-M_{x}^{2}\right)\left(k_{y}^{2}+k_{z}^{2}\right)} \tag{13}
\end{equation*}
$$

or substituting (5) into (13),

$$
\begin{equation*}
\frac{\omega S}{c_{o}}>(\sigma-2 n \pi) M_{y}+\sqrt{\left(1-M_{x}^{2}\right)\left[(\sigma-2 n \pi)^{2}+k_{z}^{2} S^{2}\right]} \tag{14}
\end{equation*}
$$

Note that the r.h.s. is always positive for any n. For $n<0$, the r.h.s. is monotonically increasing with n. So, the modes are ordered : -1 cuts on before -2 and n before $n-1$.

For $n>0$, and $k_{z}=0$, the modes are similarly ordered by $n ; n$ cuts on before $n-1$. If $k_{z} \neq 0$, it is possible depending on σ and k_{z} to have a mode at higher n cuts on before a lower one. However, for larger n, the modes will appear in the n order.

2 For a gust $\vec{a} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$

$$
\begin{equation*}
\sigma=\vec{k} \cdot \vec{S} \tag{15}
\end{equation*}
$$

For large structure turbomachinery, $k_{1}=\frac{\omega}{U}, k_{2}=k_{1} \cot \mu$. Thus $\sigma=\kappa \omega \frac{S}{U}$, where $\kappa=\frac{1}{S}\left(S_{1}+\cot \mu S_{2}\right)=$ $(\sin \alpha+\cot \mu \cos \alpha)$.

Condition (8) becomes,

$$
\begin{equation*}
\left[\frac{\omega S}{c_{o}}-M_{y}(\sigma-2 n \pi)\right]^{2}-\left(1-M_{x}^{2}\right)\left[(\sigma-2 n \pi)^{2}+S^{2} k_{z}^{2}\right]>0 \tag{16}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left[\frac{\omega S}{c_{o}}\left(1-\frac{\kappa M_{y}}{M}\right)+2 n \pi M_{y}\right]^{2}-\left(1-M_{x}^{2}\right)\left[\left(\kappa \frac{\omega S}{U}-2 n \pi\right)^{2}+S^{2} k_{z}^{2}\right]>0 \tag{17}
\end{equation*}
$$

Let $\tilde{\omega}=\frac{\omega S}{c_{o}}$,

$$
\begin{align*}
\tilde{\omega}^{2}\left[\left(1-\frac{\kappa M_{y}}{M}\right)^{2}-\left(1-M_{x}^{2}\right) \frac{\kappa^{2}}{M^{2}}\right]+2 \tilde{\omega} & {\left[\left(1-\frac{\kappa M_{y}}{M}\right) 2 n \pi M_{y}+\left(1-M_{x}^{2}\right) \frac{2 n \pi \kappa}{M}\right]+} \\
& 4 n^{2} \pi^{2} M_{y}^{2}-\left(1-M_{x}^{2}\right)\left(4 n^{2} \pi^{2}+S^{2} k_{z}^{2}\right)>0 \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \tilde{\omega}^{2}\left(1-\frac{\kappa^{2} \beta^{2}}{M^{2}}-\frac{2 \kappa M_{y}}{M}\right)+2 \tilde{\omega}(2 n \pi) \\
& \overbrace{\left(M_{y}-\kappa M+\frac{\kappa}{M}\right)}^{M_{y}+\frac{\kappa \beta^{2}}{M}} \tag{19}\\
&-4 n^{2} \pi^{2} \beta^{2}-\left(1-M_{x}^{2}\right) S^{2} k_{z}^{2}>0
\end{align*}
$$

The roots of the trinomial are $\tilde{\omega}_{1}>\tilde{\omega}_{2}$.
If,

$$
\begin{equation*}
\left(1-\frac{\kappa^{2} \beta^{2}}{M^{2}}-\frac{2 \kappa M_{y}}{M}\right)>0 \tag{20}
\end{equation*}
$$

Then $\tilde{\omega}_{1}>0$ and $\tilde{\omega}_{2}<0$ and the acoustic wave will propagate only if $\tilde{\omega}>\tilde{\omega}_{1} . k_{z}$ will increase $\tilde{\omega}_{1}$.
If,

$$
\begin{equation*}
\left(1-\frac{\kappa^{2} \beta^{2}}{M^{2}}-\frac{2 \kappa M_{y}}{M}\right)<0 \tag{21}
\end{equation*}
$$

Then both $\tilde{\omega}_{1}>0$ and $\tilde{\omega}_{2}>0$. The acoustic mode propagate for $\tilde{\omega}_{2}<\tilde{\omega}<\tilde{\omega}_{1}$. $\tilde{\omega}_{1}$ and $\tilde{\omega}_{2}$ are called the cut-off and cut-on frequencies, respectively. k_{z} will increase $\tilde{\omega}_{2}$ and reduce $\tilde{\omega}_{1}$.

Note that for lower M, the coefficient of $\tilde{\omega}^{2}$ is negative and as a result, a mode n cuts on at $\tilde{\omega}=\tilde{\omega}_{2}$. However, this same mode will cut-off at $\tilde{\omega}=\tilde{\omega}_{1}$.

For a flat plate cascade, $\alpha=\chi$ and $\kappa=\frac{\cos \alpha-\mu}{\sin \mu}$.
$\kappa=\frac{\cos \nu}{\sin \mu}, \mu=\tan ^{-1} \frac{k_{1}}{k_{2}}$.

The Acoustic Intensity

$$
\begin{gather*}
\vec{I}=\left(\frac{p^{\prime}}{\rho_{o}}+\vec{U} \cdot \vec{u}\right)\left(\rho_{o} \vec{u}+\rho^{\prime} \vec{U}\right) \tag{22}\\
\frac{p^{\prime}}{\rho_{o}}=-\frac{D_{o}}{D t} \phi=i(\omega-\vec{U} \cdot \vec{k}) \phi \tag{23}\\
\vec{u}=\nabla \phi=i \vec{k} \phi \tag{24}\\
\frac{p^{\prime}}{\rho_{o}}+\vec{u} \cdot \vec{U}=i \omega \phi \tag{25}
\end{gather*}
$$

whose real part is, $-\omega \sin (\vec{k} \cdot \vec{x}-\omega t)$.

$$
\begin{equation*}
\rho_{o}\left(\vec{u}+\frac{p^{\prime}}{\rho_{o}} \vec{U}\right)=i \rho_{o} \phi\left[\vec{k}+\left(\frac{\omega}{c_{o}}-\vec{M} \cdot \vec{k}\right) \vec{M}\right] \tag{26}
\end{equation*}
$$

whose real part is, $-\rho_{o}\left[\vec{k}+\left(\frac{\omega}{c_{o}}-\vec{M} \cdot \vec{k}\right) \vec{M}\right] \sin (\vec{k} \cdot \vec{x}-\omega t)$.

$$
\begin{equation*}
\vec{I}=\rho_{o} \omega \sin ^{2}(\vec{k} \cdot \vec{x}-\omega t)\left[\vec{k}+\left(\frac{\omega}{c_{o}}-\vec{M} \cdot \vec{k}\right) \vec{M}\right] \tag{27}
\end{equation*}
$$

The intensity in the x-direction,

$$
\begin{equation*}
I_{x}= \pm \rho_{o} \omega \sin ^{2}(\vec{k} \cdot \vec{x}-\omega t) \sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\beta_{x}^{2}\left(k_{y}^{2}+k_{z}^{2}\right)} \tag{28}
\end{equation*}
$$

The + sign corresponds to acoustic energy flowing in the downstream direction and the - to acoustic energy in the upstream direction. Note that at cut-on condition $I_{x}=0$.

Thus, the + sign in (9) corresponds to downstream propagating waves, while the - corresponds to upstream waves.

The average energy crossing area $S \times b$

$$
\begin{equation*}
\bar{E}=\rho_{o} \omega \frac{S b}{2} \sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\beta_{x}^{2}\left(k_{y}^{2}+k_{z}^{2}\right)} \tag{29}
\end{equation*}
$$

The Group Velocity

First, we note that the phase velocity,

$$
\begin{equation*}
C_{p h}=\frac{\omega}{k_{x}}=\frac{\beta_{x}^{2} \omega}{-M_{x}\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right) \pm \sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\beta_{x}^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}} \tag{30}
\end{equation*}
$$

The group velocity,

$$
\begin{gather*}
C_{g}=\frac{d \omega}{d k_{x}}=\frac{1}{\frac{d k_{x}}{d \omega}} \tag{31}\\
\frac{1}{C_{g}}=\frac{d k_{x}}{d \omega}=\frac{1}{\beta_{x}^{2}}\left[-\frac{M_{x}}{c_{o}} \pm \frac{1}{c_{o}} \frac{\frac{\omega}{c_{o}}-k_{y} M_{y}}{\sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\beta_{x}^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}}\right] \\
 \tag{32}\\
=\frac{1}{\beta_{x}^{2} c_{o}}\left[-M_{x} \pm \frac{\frac{\omega}{c_{o}}-k_{y} M_{y}}{\sqrt{\left(\frac{\omega}{c_{o}}-k_{y} M_{y}\right)^{2}-\beta_{x}^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}}\right]
\end{gather*}
$$

The second term in the bracket is >1, and the first is <1. Therefore, the sign of C_{g} is \pm as that of the second term in the bracket. This confirms that the energy flows either upstream or downstream following the \pm in (8).

For upstream waves, - , the bracket is >1, hence $C_{g}<c_{o}$. Near cut-on, the square root $\rightarrow 0$ and $C_{g} \rightarrow 0$.

For downstream waves,

$$
\begin{equation*}
\frac{1}{C_{g}}>\frac{1}{\beta_{x}^{2} c_{o}}\left[-M_{x}+1\right]=\frac{1}{c_{o}\left(1+M_{x}\right)} \tag{33}
\end{equation*}
$$

or $C_{g}<c_{o}\left(1+M_{x}\right)$.

