The Acoustic Problem for a Linear Cascade

Figure 1: Linear Cascade in a Uniform Flow

Consider a linear cascade of blades with spacing S. Let (x,y,z) be a coordinate system with the axis x in the direction of the machine axis and z in the span direction. The upstream velocity $\vec{U} = U\vec{e}_x$ makes the angle α with the x axis. The spacing is defined by,

$$\vec{S} = S\vec{e}_y = S\left(\sin\alpha\vec{E}_x + \cos\alpha\vec{E}_y\right) \tag{1}$$

A plane wave,

$$\phi = e^{i(\vec{k}\cdot\vec{x}-\omega t)} \tag{2}$$

is propagating in the \vec{k} direction: $\vec{k} = \{k_x, k_y, k_z\}$ in the *e* frame.

 ϕ must satisfy the wave equation,

$$\left(\frac{1}{c_o^2}\frac{D_o^2}{Dt^2} - \nabla^2\right)\phi = 0 \tag{3}$$

This implies that,

$$\vec{k}^2 - \frac{1}{c_o^2} \left(\vec{k} \cdot \vec{U} - \omega \right)^2 = 0 \tag{4}$$

In addition, we impose a quasiperiodicity condition,

$$k_y S = \sigma - 2n\pi \tag{5}$$

where σ is the interblade phase angle.

Expanding (4),

$$k_x^2(1 - M_x^2) + 2k_x M_x \left(\frac{\omega}{c_o} - k_y M_y\right) + k_y^2 + k_z^2 - \left(\frac{\omega}{c_o} - k_y M_y\right)^2 = 0$$
(6)

For a propagating wave k_x must be real,

$$M_x^2 \left(\frac{\omega}{c_o} - k_y M_y\right)^2 + (1 - M_x^2) \left[\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - k_y^2 - k_z^2 \right] > 0$$
(7)

Or,

$$\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - (1 - M_x^2)(k_y^2 + k_z^2) > 0 \tag{8}$$

$$k_x = \frac{-M_x \left(\frac{\omega}{c_o} - k_y M_y\right) \pm \sqrt{\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - (1 - M_x^2)(k_y^2 + k_z^2)}}{(1 - M_x^2)} \tag{9}$$

Note that for a given interblade phase angle σ , k_y is given by (5). Thus, we have propagating modes $k_x^{(n)}$ where n is determined by the inequality (8).

Let us examine the condition for a mode (n) to propagate, to this end we consider two important cases. For the first case we assume σ to be constant and independent of ω as in the case of a flutter. In the second case, we consider the acoustics radiated in response to a gust.

1 $\sigma = \text{constant}$

a. if $\frac{\omega}{c_o} > k_y M_y$, then

$$\frac{\omega}{c_o} > k_y M_y + \sqrt{(1 - M_x^2)(k_y^2 + k_z^2)} \tag{10}$$

b. If $\frac{\omega}{c_o} < k_y M_y$, then

$$\frac{\omega}{c_o} < k_y M_y - \sqrt{(1 - M_x^2)(k_y^2 + k_z^2)} \tag{11}$$

However, $k_y M_y$ is always less than $\sqrt{(1-M_x^2)k_y^2}$ since,

$$k_y^2 M_y^2 < (1 - M_x^2) k_y^2 \tag{12}$$

as $\left[1 - (M_x^2 + M_y^2))\right]k_y^2 > 0$. This implies that the r.h.s. is negative, and that the above condition requires $\frac{\omega}{c_o} < 0$ which is not possible.

Therefore, for σ =constant, the condition for a mode to exist is,

$$\frac{\omega}{c_o} > k_y M_y + \sqrt{(1 - M_x^2)(k_y^2 + k_z^2)} \tag{13}$$

or substituting (5) into (13),

$$\frac{\omega S}{c_o} > (\sigma - 2n\pi)M_y + \sqrt{(1 - M_x^2)\left[(\sigma - 2n\pi)^2 + k_z^2 S^2\right]}$$
(14)

Note that the r.h.s. is always positive for any n. For n < 0, the r.h.s. is monotonically increasing with n. So, the modes are ordered : -1 cuts on before -2 and n before n - 1.

For n > 0, and $k_z = 0$, the modes are similarly ordered by n; n cuts on before n - 1. If $k_z \neq 0$, it is possible depending on σ and k_z to have a mode at higher n cuts on before a lower one. However, for larger n, the modes will appear in the n order.

2 For a gust $\vec{a}e^{i(\vec{k}\cdot\vec{x}-\omega t)}$

 $\sigma = \vec{k} \cdot \vec{S} \tag{15}$

For large structure turbomachinery, $k_1 = \frac{\omega}{U}$, $k_2 = k_1 \cot \mu$. Thus $\sigma = \kappa \omega \frac{S}{U}$, where $\kappa = \frac{1}{S}(S_1 + \cot \mu S_2) = (\sin \alpha + \cot \mu \cos \alpha)$.

Condition (8) becomes,

$$\left[\frac{\omega S}{c_o} - M_y(\sigma - 2n\pi)\right]^2 - (1 - M_x^2) \left[(\sigma - 2n\pi)^2 + S^2 k_z^2\right] > 0$$
(16)

or,

$$\left[\frac{\omega S}{c_o}(1 - \frac{\kappa M_y}{M}) + 2n\pi M_y\right]^2 - (1 - M_x^2) \left[(\kappa \frac{\omega S}{U} - 2n\pi)^2 + S^2 k_z^2\right] > 0$$
(17)

Let $\tilde{\omega} = \frac{\omega S}{c_o}$,

$$\tilde{\omega}^{2} \left[(1 - \frac{\kappa M_{y}}{M})^{2} - (1 - M_{x}^{2}) \frac{\kappa^{2}}{M^{2}} \right] + 2\tilde{\omega} \left[(1 - \frac{\kappa M_{y}}{M}) 2n\pi M_{y} + (1 - M_{x}^{2}) \frac{2n\pi\kappa}{M} \right] + 4n^{2}\pi^{2}M_{y}^{2} - (1 - M_{x}^{2})(4n^{2}\pi^{2} + S^{2}k_{z}^{2}) > 0$$
(18)

$$\tilde{\omega}^2 \left(1 - \frac{\kappa^2 \beta^2}{M^2} - \frac{2\kappa M_y}{M} \right) + 2\tilde{\omega}(2n\pi) \underbrace{\left(M_y - \kappa M + \frac{\kappa}{M} \right)}_{-4n^2 \pi^2 \beta^2 - (1 - M_x^2) S^2 k_z^2 > 0}$$
(19)

The roots of the trinomial are $\tilde{\omega}_1 > \tilde{\omega}_2$.

If,

$$\left(1 - \frac{\kappa^2 \beta^2}{M^2} - \frac{2\kappa M_y}{M}\right) > 0 \tag{20}$$

Then $\tilde{\omega}_1 > 0$ and $\tilde{\omega}_2 < 0$ and the acoustic wave will propagate only if $\tilde{\omega} > \tilde{\omega}_1$. k_z will increase $\tilde{\omega}_1$.

If,

$$\left(1 - \frac{\kappa^2 \beta^2}{M^2} - \frac{2\kappa M_y}{M}\right) < 0 \tag{21}$$

Then both $\tilde{\omega}_1 > 0$ and $\tilde{\omega}_2 > 0$. The acoustic mode propagate for $\tilde{\omega}_2 < \tilde{\omega} < \tilde{\omega}_1$. $\tilde{\omega}_1$ and $\tilde{\omega}_2$ are called the cut-off and cut-on frequencies, respectively. k_z will increase $\tilde{\omega}_2$ and reduce $\tilde{\omega}_1$.

Note that for lower M, the coefficient of $\tilde{\omega}^2$ is negative and as a result, a mode n cuts on at $\tilde{\omega} = \tilde{\omega}_2$. However, this same mode will cut-off at $\tilde{\omega} = \tilde{\omega}_1$.

For a flat plate cascade, $\alpha = \chi$ and $\kappa = \frac{\cos \alpha - \mu}{\sin \mu}$. $\kappa = \frac{\cos \nu}{\sin \mu}, \ \mu = \tan^{-1} \frac{k_1}{k_2}.$

The Acoustic Intensity

$$\vec{I} = \left(\frac{p'}{\rho_o} + \vec{U} \cdot \vec{u}\right) \left(\rho_o \vec{u} + \rho' \vec{U}\right) \tag{22}$$

$$\frac{p'}{\rho_o} = -\frac{D_o}{Dt}\phi = i(\omega - \vec{U} \cdot \vec{k})\phi$$
(23)

$$\vec{u} = \nabla \phi = i\vec{k}\phi \tag{24}$$

$$\frac{p'}{\rho_o} + \vec{u} \cdot \vec{U} = i\omega\phi \tag{25}$$

whose real part is, $-\omega \sin{(\vec{k} \cdot \vec{x} - \omega t)}$.

$$\rho_o\left(\vec{u} + \frac{p'}{\rho_o}\vec{U}\right) = i\rho_o\phi\left[\vec{k} + \left(\frac{\omega}{c_o} - \vec{M} \cdot \vec{k}\right)\vec{M}\right]$$
(26)

whose real part is, $-\rho_o \left[\vec{k} + \left(\frac{\omega}{c_o} - \vec{M} \cdot \vec{k}\right) \vec{M}\right] \sin{(\vec{k} \cdot \vec{x} - \omega t)}.$

$$\vec{I} = \rho_o \omega \sin^2 \left(\vec{k} \cdot \vec{x} - \omega t \right) \left[\vec{k} + \left(\frac{\omega}{c_o} - \vec{M} \cdot \vec{k} \right) \vec{M} \right]$$
(27)

The intensity in the x-direction,

$$I_x = \pm \rho_o \omega \sin^2 \left(\vec{k} \cdot \vec{x} - \omega t \right) \sqrt{\left(\frac{\omega}{c_o} - k_y M_y \right)^2 - \beta_x^2 (k_y^2 + k_z^2)}$$
(28)

The + sign corresponds to acoustic energy flowing in the downstream direction and the - to acoustic energy in the upstream direction. Note that at cut-on condition $I_x = 0$.

Thus, the + sign in (9) corresponds to downstream propagating waves, while the - corresponds to upstream waves.

The average energy crossing area $S\times b$

$$\bar{E} = \rho_o \omega \frac{Sb}{2} \sqrt{\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - \beta_x^2 (k_y^2 + k_z^2)} \tag{29}$$

The Group Velocity

First, we note that the phase velocity,

$$C_{ph} = \frac{\omega}{k_x} = \frac{\beta_x^2 \omega}{-M_x \left(\frac{\omega}{c_o} - k_y M_y\right) \pm \sqrt{\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - \beta_x^2 (k_y^2 + k_z^2)}}$$
(30)

The group velocity,

$$C_g = \frac{d\omega}{dk_x} = \frac{1}{\frac{dk_x}{d\omega}}$$
(31)

$$\frac{1}{C_g} = \frac{dk_x}{d\omega} = \frac{1}{\beta_x^2} \left[-\frac{M_x}{c_o} \pm \frac{1}{c_o} \frac{\frac{\omega}{c_o} - k_y M_y}{\sqrt{\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - \beta_x^2 (k_y^2 + k_z^2)}} \right] \\ = \frac{1}{\beta_x^2 c_o} \left[-M_x \pm \frac{\frac{\omega}{c_o} - k_y M_y}{\sqrt{\left(\frac{\omega}{c_o} - k_y M_y\right)^2 - \beta_x^2 (k_y^2 + k_z^2)}} \right]$$
(32)

The second term in the bracket is > 1, and the first is < 1. Therefore, the sign of C_g is \pm as that of the second term in the bracket. This confirms that the energy flows either upstream or downstream following the \pm in (8).

For upstream waves, –, the bracket is > 1, hence $C_g < c_o$. Near cut-on, the square root $\rightarrow 0$ and $C_g \rightarrow 0$.

For downstream waves,

$$\frac{1}{C_g} > \frac{1}{\beta_x^2 c_o} \left[-M_x + 1 \right] = \frac{1}{c_o (1 + M_x)} \tag{33}$$

or $C_g < c_o(1 + M_x)$.