
The Acoustic Problem for a Linear Cascade
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Figure 1: Linear Cascade in a Uniform Flow

Consider a linear cascade of blades with spacing S. Let (x,y,z) be a coordinate system with the axis x

in the direction of the machine axis and z in the span direction. The upstream velocity ~U = U~ex makes the

angle α with the x axis. The spacing is defined by,

~S = S~ey = S
(
sinα~Ex + cosα~Ey

)
(1)

A plane wave,

φ = ei(
~k·~x−ωt) (2)

is propagating in the ~k direction: ~k = {kx, ky, kz} in the e frame.

φ must satisfy the wave equation,
(

1

c2o

D2
o

Dt2
−∇2

)
φ = 0 (3)

This implies that,

~k2 − 1

c2o

(
~k · ~U − ω

)2

= 0 (4)
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In addition, we impose a quasiperiodicity condition,

kyS = σ − 2nπ (5)

where σ is the interblade phase angle.

Expanding (4),

k2x(1−M2
x) + 2kxMx

(
ω

co
− kyMy

)
+ k2y + k2z −

(
ω

co
− kyMy

)2

= 0 (6)

For a propagating wave kx must be real,

M2
x

(
ω

co
− kyMy

)2

+ (1−M2
x)

[(
ω

co
− kyMy

)2

− k2y − k2z

]
> 0 (7)

Or, (
ω

co
− kyMy

)2

− (1−M2
x)(k

2
y + k2z) > 0 (8)

kx =
−Mx

(
ω
co

− kyMy

)
±
√(

ω
co

− kyMy

)2

− (1−M2
x)(k

2
y + k2z)

(1−M2
x)

(9)

Note that for a given interblade phase angle σ, ky is given by (5). Thus, we have propagating modes k
(n)
x

where n is determined by the inequality (8).

Let us examine the condition for a mode (n) to propagate, to this end we consider two important cases.

For the first case we assume σ to be constant and independent of ω as in the case of a flutter. In the second

case, we consider the acoustics radiated in response to a gust.

1 σ =constant

a. if ω
co

> kyMy, then

ω

co
> kyMy +

√
(1−M2

x)(k
2
y + k2z) (10)

b. If ω
co

< kyMy, then

ω

co
< kyMy −

√
(1−M2

x)(k
2
y + k2z) (11)

However, kyMy is always less than
√
(1−M2

x)k
2
y since,

k2yM
2
y < (1−M2

x)k
2
y (12)
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as
[
1− (M2

x +M2
y ))

]
k2y > 0. This implies that the r.h.s. is negative, and that the above condition

requires ω
co

< 0 which is not possible.

Therefore, for σ =constant, the condition for a mode to exist is,

ω

co
> kyMy +

√
(1−M2

x)(k
2
y + k2z) (13)

or substituting (5) into (13),

ωS

co
> (σ − 2nπ)My +

√
(1−M2

x) [(σ − 2nπ)2 + k2zS
2] (14)

Note that the r.h.s. is always positive for any n. For n < 0, the r.h.s. is monotonically increasing with n.

So, the modes are ordered : −1 cuts on before −2 and n before n− 1.

For n > 0, and kz = 0, the modes are similarly ordered by n; n cuts on before n − 1. If kz 6= 0, it is

possible depending on σ and kz to have a mode at higher n cuts on before a lower one. However, for larger

n, the modes will appear in the n order.

2 For a gust ~aei(
~k·~x−ωt)

σ = ~k · ~S (15)

For large structure turbomachinery, k1 = ω
U , k2 = k1 cotµ. Thus σ = κω S

U , where κ = 1
S (S1 + cotµS2) =

(sinα+ cotµ cosα).

Condition (8) becomes,

[
ωS

co
−My(σ − 2nπ)

]2
− (1−M2

x)
[
(σ − 2nπ)2 + S2k2z

]
> 0 (16)

or, [
ωS

co
(1− κMy

M
) + 2nπMy

]2
− (1−M2

x)

[
(κ

ωS

U
− 2nπ)2 + S2k2z

]
> 0 (17)

Let ω̃ = ωS
co

,

ω̃2

[
(1− κMy

M
)2 − (1−M2

x)
κ2

M2

]
+ 2ω̃

[
(1− κMy

M
)2nπMy + (1−M2

x)
2nπκ

M

]
+

4n2π2M2
y − (1−M2

x)(4n
2π2 + S2k2z) > 0 (18)
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ω̃2

(
1− κ2β2

M2
− 2κMy

M

)
+ 2ω̃(2nπ)

My+
κβ2

M︷ ︸︸ ︷(
My − κM +

κ

M

)

−4n2π2β2 − (1−M2
x)S

2k2z > 0 (19)

The roots of the trinomial are ω̃1 > ω̃2.

If, (
1− κ2β2

M2
− 2κMy

M

)
> 0 (20)

Then ω̃1 > 0 and ω̃2 < 0 and the acoustic wave will propagate only if ω̃ > ω̃1. kz will increase ω̃1.

If, (
1− κ2β2

M2
− 2κMy

M

)
< 0 (21)

Then both ω̃1 > 0 and ω̃2 > 0. The acoustic mode propagate for ω̃2 < ω̃ < ω̃1. ω̃1 and ω̃2 are called the

cut-off and cut-on frequencies, respectively. kz will increase ω̃2 and reduce ω̃1.

Note that for lower M , the coefficient of ω̃2 is negative and as a result, a mode n cuts on at ω̃ = ω̃2.

However, this same mode will cut-off at ω̃ = ω̃1.

For a flat plate cascade, α = χ and κ = cosα−µ
sinµ .

κ = cos ν
sinµ , µ = tan−1 k1

k2
.
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The Acoustic Intensity

~I =

(
p′

ρo
+ ~U · ~u

)
(ρo~u+ ρ′~U) (22)

p′

ρo
= −Do

Dt
φ = i(ω − ~U · ~k)φ (23)

~u = ∇φ = i~kφ (24)

p′

ρo
+ ~u · ~U = iωφ (25)

whose real part is, −ω sin (~k · ~x− ωt).

ρo

(
~u+

p′

ρo
~U

)
= iρoφ

[
~k +

(
ω

co
− ~M · ~k

)
~M

]
(26)

whose real part is, −ρo

[
~k +

(
ω
co

− ~M · ~k
)

~M
]
sin (~k · ~x− ωt).

~I = ρoω sin2 (~k · ~x− ωt)

[
~k +

(
ω

co
− ~M · ~k

)
~M

]
(27)

The intensity in the x-direction,

Ix = ±ρoω sin2 (~k · ~x− ωt)

√(
ω

co
− kyMy

)2

− β2
x(k

2
y + k2z) (28)

The + sign corresponds to acoustic energy flowing in the downstream direction and the − to acoustic energy

in the upstream direction. Note that at cut-on condition Ix = 0.

Thus, the + sign in (9) corresponds to downstream propagating waves, while the − corresponds to

upstream waves.

The average energy crossing area S × b

Ē = ρoω
Sb

2

√(
ω

co
− kyMy

)2

− β2
x(k

2
y + k2z) (29)
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The Group Velocity

First, we note that the phase velocity,

Cph =
ω

kx
=

β2
xω

−Mx

(
ω
co

− kyMy

)
±
√(

ω
co

− kyMy

)2

− β2
x(k

2
y + k2z)

(30)

The group velocity,

Cg =
dω

dkx
=

1
dkx

dω

(31)

1

Cg
=

dkx
dω

=
1

β2
x


−

Mx

co
± 1

co

ω
co

− kyMy√(
ω
co

− kyMy

)2

− β2
x(k

2
y + k2z)




=
1

β2
xco


−Mx ±

ω
co

− kyMy√(
ω
co

− kyMy

)2

− β2
x(k

2
y + k2z)


 (32)

The second term in the bracket is > 1, and the first is < 1. Therefore, the sign of Cg is ± as that of the

second term in the bracket. This confirms that the energy flows either upstream or downstream following

the ± in (8).

For upstream waves, −, the bracket is > 1, hence Cg < co. Near cut-on, the square root→ 0 and

Cg → 0.

For downstream waves,

1

Cg
>

1

β2
xco

[−Mx + 1] =
1

co(1 +Mx)
(33)

or Cg < co(1 +Mx).
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