The Acoustic Problem for a Linear Cascade

Figure 1: Linear Cascade in a Uniform Flow

Consider a linear cascade of blades with spacing S. Let (z,y,z) be a coordinate system with the axis x
in the direction of the machine axis and z in the span direction. The upstream velocity U=U €, makes the

angle o with the x axis. The spacing is defined by,

—

S=5e,=>5 (Sin aE, + cos al*i,) (1)

A plane wave,
¢ = ei(E~f—wt) (2)
is propagating in the k direction: k = {kz, ky, k.} in the e frame.

¢ must satisfy the wave equation,

This implies that,



In addition, we impose a quasiperiodicity condition,
kyS =0 —2nmw

where o is the interblade phase angle.
Expanding (4),
w w 2
k2(1 — M2) + 2k, M, ( — kyMy> +kl 4+ k2 — ( — kyMy) =0
Co Co
For a propagating wave k, must be real,
w 2 w 2
M? ( — kyMy> +(1—M2) [( - kyMy) — ko - kQ] >0
Co Co
Or,
w 2
( - kyMy> — (1= M)kl +k2)>0

Co

M, (£ = kM, ) + \/(W - kyMy)2 — (1= M2)(k2 + k2)
(1—M3)

iy =

(9)

Note that for a given interblade phase angle o, k, is given by (5). Thus, we have propagating modes kg(gn)

where n is determined by the inequality (8).

Let us examine the condition for a mode (n) to propagate, to this end we consider two important cases.

For the first case we assume ¢ to be constant and independent of w as in the case of a flutter. In the second

case, we consider the acoustics radiated in response to a gust.

1 o0 =constant

a. if o > kyM,, then

S kM, + \/(1 — M2)(k2 + k2)

b. If £ < k,M,, then

2 <y My = \[(1 = M2)(k2 + k2)

Co

However, k, M, is always less than /(1 — M2)kZ since,

272 2\1.2
K2M2 < (1— M2)k?



as [1 — (M2 + My2))] ki > 0. This implies that the r.h.s. is negative, and that the above condition

requires - < 0 which is not possible.

Therefore, for ¢ =constant, the condition for a mode to exist is,

ad — M2V(E2 4 k2
> kM, + = M2+ k2) (13)
or substituting (5) into (13),
02—5 > (0 —2nm)M, + /(1 — M2) (o — 2nm)? + k252] (14)

Note that the r.h.s. is always positive for any n. For n < 0, the r.h.s. is monotonically increasing with n.
So, the modes are ordered : —1 cuts on before —2 and n before n — 1.

For n > 0, and k, = 0, the modes are similarly ordered by n; n cuts on before n — 1. If k, # 0, it is
possible depending on ¢ and k, to have a mode at higher n cuts on before a lower one. However, for larger

n, the modes will appear in the n order.

2 For a gust de!F7-«t)

c=k-S (15)
For large structure turbomachinery, k1 = %, ko = kjcot p. Thus o = ﬁw%7 where k = %(Sl + cot uSy) =
(sin @ + cot p cos ).
Condition (8) becomes,
wS 2
[CO - M, (0 — an)] — (1= M2) (o0 —2nm)* + S%k2] >0 (16)
or,
s M, ? s
L2 =By Lonahd, | — (1— M2) (k22 — 2nm)? + S2K2| > 0 (17)
Co M U
Let w = %,
M, K2 kM 2nmk
22 (=2 ) | fow (1= B YoM, + (1 — M2
& (1= R = (= M| 2 (- penn, + (- 2 BT
An’m® M} — (1 — M2)(4n°n® 4+ S?k2) > 0 (18)



w32
My+5

212 26 M.
@2<1—“B _ y)+2dz(2n7r)(My—feM+K)

M? M M
—4n?7m2p% — (1 — M3)S%k? >0 (19)
The roots of the trinomial are &, > Ws.
If,
K232 2KM,
<1M2 U >>0 (20)
Then w; > 0 and w2 < 0 and the acoustic wave will propagate only if @ > @w;. k., will increase w;.
If,
K2B%2  2sM
AN AT RO 21
( M2 M ) < (21)

Then both @; > 0 and @ws > 0. The acoustic mode propagate for s < © < @1. W1 and wy are called the
cut-off and cut-on frequencies, respectively. k, will increase W and reduce @ .
Note that for lower M, the coefficient of &2 is negative and as a result, a mode n cuts on at & = @s.

However, this same mode will cut-off at w = ;.

For a flat plate cascade, a = x and k = %
k=S¥ g —tan~ R
T sinp? K= ko "



The Acoustic Intensity

I= <f}’/ +U ﬁ) (poii + p'U) (22)
Z—D‘;¢—z(w(7~/;)¢ (23)
i =V¢=ikd (24)

ﬁ/ +i-U=iwe (25)

Do <ﬁ+ /z_'7> = ipod {l_ﬂ <w - M- 12) M} (26)

The intensity in the z-direction,

2
I, = +powsin® (k- T — wt)\/(z] - kyMy> — B2(k2 + k2) (28)

o
The + sign corresponds to acoustic energy flowing in the downstream direction and the — to acoustic energy
in the upstream direction. Note that at cut-on condition I, = 0.

Thus, the 4 sign in (9) corresponds to downstream propagating waves, while the — corresponds to
upstream waves.

The average energy crossing area S X b

_ Sb 2
B=pury | (2= k) - 52005 + 1) (20)



The Group Velocity

First, we note that the phase velocity,

w 2w
Con = = B (30)

—M, (ﬂ - kyMy> + \/(w - kyMy)2 — B2(kZ + k2)

The group velocity,

dw 1
h dw
1_dk’w_1 Mxil :*kyMy
Cg dw Bg Co Co 2
(&= kM) = 52082+ K2)
1 ZUT) — kyMy

= |-M, +

B2c, (32)

2
\/ (& kM) — 52082 + K2)
The second term in the bracket is > 1, and the first is < 1. Therefore, the sign of Cy is &= as that of the

second term in the bracket. This confirms that the energy flows either upstream or downstream following

the & in (8).

For upstream waves, —, the bracket is > 1, hence C; < ¢,. Near cut-on, the square root— 0 and
Cy — 0.
For downstream waves,
1 1 1
—_— > —[-M,+1]= ——— 33
CQ ﬁ%co [ =t ] Ca(l + Mz) ( )

or Cy < co(1+ My).



