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HOMEWORK 1

1. The velocity components for a particular flow field are given by

u = 16x2 + y, (1)

v = 10, (2)

w = yz2. (3)

(a) Determine the circulation, Γ, for this flow field around the following contour:

0 ≤ x ≤ 10 : y = 0,

0 ≤ y ≤ 5 : x = 10,

0 ≤ x ≤ 10 : y = 5,

0 ≤ y ≤ 5 : x = 0.

(b) Calculate the vorticity vector, ~ζ, for the given flow field and evaluate∫
Σ

~ζ · ~ndΣ,

where Σ is the area of the rectangle defined in (a), and ~n is the unit outward normal to
the area. Compare the result obtained in (b) with that obtained in (a).

2. The velocity components in cylindrical coordinates for a uniform flow around a circular
cylinder are

ur = U(1− a2

r2
) cosθ, (4)

uθ = −U(1 +
a2

r2
) sinθ − Γ

2πr
, (5)

where U is the upstream velocity and a is the radius of the cylinder. We assume the fluid
density ρ to be constant and viscous effects are negligible. We also neglect body forces.
It is helpful to non-dimensionalize length, velocity and pressure with respect to a, U , and
(1/2)ρU2, respectively. It is also convenient to introduce the parameter Γ∗ = Γ/(4πUa).
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(a) Calculate the vorticity of the velocity field (4, 5). Find the velocity potential if it
exists.

(b) Calculate the circulation of the velocity field around any closed circuit surrounding
the circle.

(c) Apply Stokes theorem to find the relation between circulation and vorticity and
compare with the results of (2a, and 2b). Comments.

(d) Show that you can use Bernoulli equation to determine the pressure p(r, θ) at any
point in the fluid, except at the origin (r = 0). Take the pressure far from the
cylinder to be constant and equal to p0.

(e) Calculate and plot the pressure distribution, p(a, θ) along the surface of the cylinder
for Γ∗ = 0, 0.5, 1, 2.

(f) Calculate the force applied on the cylinder by the fluid motion.

(g) Find the location of the stagnation points for Γ∗ = 0, 0.5, 1, 2.

3. In cylindrical coordinates we introduce the variables

r = (x2 + y2)
1
2 , (6)

θ = tan−1(
y

x
), (7)

z = z. (8)

Let er, eθ and ez represent the radial, circumferential and z-axis unit vectors, then the
velocity field can be written as

V = urer + uθeθ + uzez. (9)

(a) For an inviscid steady flow, the momentum equation is a balance between inertia
and pressure forces

(u · ∇)u = −1

ρ
∇p (10)

Evaluate the radial component of the acceleration (u · ∇)u and write down the
radial momentum equation.

(b) If ur = 0, show that (10) reduces to

∂p

∂r
= ρ

u2
θ

r
. (11)

Explain this simple result.

(c) For simplicity we assume (i) the flow to be incompressible, i.e., ρ is constant and
(ii) uz = 0. Calculate the variation of the pressure for (i) a rigid body rotation,
uθ = Ωr and (ii) a free vortex flow, uθ = Γ/r. Compare the result with Bernoulli’s
equation and explain similarity and difference.
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(d) A simple model for a hurricane is to assume a rigid body rotation inside the eye of
the hurricane r < a and a free vortex flow outside r > a. The two are matched at
r = a where the pressure and velocity are assumed to be continuous. Determine Ω
and Γ in terms of the pressure at the hurricane center p0 and at infinity p∞.

(e) Apply this model to the case of a real hurricane. Hint: Get information from real
data.

4. Every particle of a mass of liquid is revolving uniformly about a fixed axis, the angular
speed varying as the nth power of the distance from the axis. Show that the motion is
irrotational only if n+ 2 = 0.
If a very small spherical portion of the liquid is suddenly solidified, prove that it will
begin to rotate about a diameter with an angular velocity (n+ 2)/2 of that with which
it was revolving about the fixed axis.

5. Bending oscillations of a wing fixed at one end and free at the other can be approximated
using the strip theory as a series of airfoils of infinite span undergoing plunging oscilla-
tions. Consider a wing in a uniform upstream velocity U . We use the complex form to
represent the harmonic oscillation of the airfoil1

h = h̄eiωt, (12)

where h̄ is the magnitude of the oscillation and ω is its angular frequency. The force
applied by air in response to the airfoil motion is

f = f̄ ei(ωt+ϕ), (13)

where ϕ is the difference in phase between the airfoil motion and the force acting on it.

(a) If a force f of period T is acting on a body moving with a velocity v, the work done
by the force is

W =

∫ T

0
f · vdt.

Calculate the wok W done by the bending oscillation over a cycle T.

(b) Show that for a harmonic oscillation represented by the complex form

W =
T

2
Re{f · v},

where Re denotes the real part, and v is the complex conjugate of v .

1The physical quantities are the real part of the complex form.
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