UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi atassi@nd.edu

Unsteady Aerodynamics and Aeroacoustics AME-90934

HOMEWORK 1

1. The velocity components for a particular flow field are given by

$$u = 16x^2 + y, (1)$$

$$v = 10, (2)$$

$$v = 10, (2)$$

$$w = yz^2. (3)$$

(a) Determine the circulation, Γ , for this flow field around the following contour:

0 < x < 10 : y = 0,

 $0 \le y \le 5$: x = 10, $0 \le x \le 10$: y = 5,

 $0 \le y \le 5 \quad : \qquad x = 0.$

(b) Calculate the vorticity vector, $\vec{\zeta}$, for the given flow field and evaluate

$$\int_{\Sigma} \vec{\zeta} \cdot \vec{n} d\Sigma,$$

where Σ is the area of the rectangle defined in (a), and \vec{n} is the unit outward normal to the area. Compare the result obtained in (b) with that obtained in (a).

2. The velocity components in cylindrical coordinates for a uniform flow around a circular cylinder are

$$u_r = U(1 - \frac{a^2}{r^2})\cos\theta, \tag{4}$$

$$u_{\theta} = -U(1 + \frac{a^2}{r^2})\sin\theta - \frac{\Gamma}{2\pi r}, \tag{5}$$

where U is the upstream velocity and a is the radius of the cylinder. We assume the fluid density ρ to be constant and viscous effects are negligible. We also neglect body forces. It is helpful to non-dimensionalize length, velocity and pressure with respect to a, U, and $(1/2)\rho U^2$, respectively. It is also convenient to introduce the parameter $\Gamma^* = \Gamma/(4\pi Ua)$.

- (a) Calculate the vorticity of the velocity field (4, 5). Find the velocity potential if it exists.
- (b) Calculate the circulation of the velocity field around any closed circuit surrounding the circle.
- (c) Apply Stokes theorem to find the relation between circulation and vorticity and compare with the results of (2a, and 2b). Comments.
- (d) Show that you can use Bernoulli equation to determine the pressure $p(r,\theta)$ at any point in the fluid, except at the origin (r = 0). Take the pressure far from the cylinder to be constant and equal to p_0 .
- (e) Calculate and plot the pressure distribution, $p(a, \theta)$ along the surface of the cylinder for $\Gamma^* = 0, 0.5, 1, 2$.
- (f) Calculate the force applied on the cylinder by the fluid motion.
- (g) Find the location of the stagnation points for $\Gamma^* = 0, 0.5, 1, 2$.
- 3. In cylindrical coordinates we introduce the variables

$$r = (x^2 + y^2)^{\frac{1}{2}}, (6)$$

$$r = (x^{2} + y^{2})^{\frac{1}{2}},$$

$$\theta = tan^{-1}(\frac{y}{x}),$$
(6)
(7)

$$z = z. (8)$$

Let $\mathbf{e_r}$, $\mathbf{e_{\theta}}$ and $\mathbf{e_z}$ represent the radial, circumferential and z-axis unit vectors, then the velocity field can be written as

$$\mathbf{V} = \mathbf{u_r} \mathbf{e_r} + \mathbf{u_\theta} \mathbf{e_\theta} + \mathbf{u_z} \mathbf{e_z}. \tag{9}$$

(a) For an inviscid steady flow, the momentum equation is a balance between inertia and pressure forces

$$(\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla \mathbf{p} \tag{10}$$

Evaluate the radial component of the acceleration $(\mathbf{u} \cdot \nabla)\mathbf{u}$ and write down the radial momentum equation.

(b) If $u_r = 0$, show that (10) reduces to

$$\frac{\partial p}{\partial r} = \rho \frac{u_{\theta}^2}{r}.\tag{11}$$

Explain this simple result.

(c) For simplicity we assume (i) the flow to be incompressible, i.e., ρ is constant and (ii) $u_z = 0$. Calculate the variation of the pressure for (i) a rigid body rotation, $u_{\theta} = \Omega r$ and (ii) a free vortex flow, $u_{\theta} = \Gamma/r$. Compare the result with Bernoulli's equation and explain similarity and difference.

- (d) A simple model for a hurricane is to assume a rigid body rotation inside the eye of the hurricane r < a and a free vortex flow outside r > a. The two are matched at r = a where the pressure and velocity are assumed to be continuous. Determine Ω and Γ in terms of the pressure at the hurricane center p_0 and at infinity p_{∞} .
- (e) Apply this model to the case of a real hurricane. *Hint: Get information from real data*.
- 4. Every particle of a mass of liquid is revolving uniformly about a fixed axis, the angular speed varying as the nth power of the distance from the axis. Show that the motion is irrotational only if n + 2 = 0.

If a very small spherical portion of the liquid is suddenly solidified, prove that it will begin to rotate about a diameter with an angular velocity (n+2)/2 of that with which it was revolving about the fixed axis.

5. Bending oscillations of a wing fixed at one end and free at the other can be approximated using the strip theory as a series of airfoils of infinite span undergoing plunging oscillations. Consider a wing in a uniform upstream velocity U. We use the complex form to represent the harmonic oscillation of the airfoil¹

$$h = \bar{h}e^{i\omega t},\tag{12}$$

where \bar{h} is the magnitude of the oscillation and ω is its angular frequency. The force applied by air in response to the airfoil motion is

$$f = \bar{f}e^{i(\omega t + \varphi)},\tag{13}$$

where φ is the difference in phase between the airfoil motion and the force acting on it.

(a) If a force \mathbf{f} of period T is acting on a body moving with a velocity \mathbf{v} , the work done by the force is

$$W = \int_0^T \mathbf{f} \cdot \mathbf{v} \, \mathbf{dt}.$$

Calculate the wok W done by the bending oscillation over a cycle T.

(b) Show that for a harmonic oscillation represented by the complex form

$$W = \frac{T}{2} Re\{ \mathbf{f} \cdot \overline{\mathbf{v}} \},$$

where Re denotes the real part, and $\overline{\mathbf{v}}$ is the complex conjugate of \mathbf{v} .

¹The physical quantities are the real part of the complex form.