
1 Fundamental Solutions to the Wave Equation

Physical insight in the sound generation mechanism can be gained by considering simple
analytical solutions to the wave equation. One example is to consider acoustic radiation
with spherical symmetry about a point ~y = {yi}, which without loss of generality can be
taken as the origin of coordinates. If t stands for time and ~x = {xi} represent the observation
point, such solutions of the wave equation,

(
∂2

∂t2
− c2

o∇2)φ = 0, (1)

will depend only on the r = |~x− ~y|. It is readily shown that in this case (1) can be cast in
the form of a one-dimensional wave equation

(
∂2

∂t2
− c2

o

∂2

∂r2
)(rφ) = 0. (2)

The general solution to (2) can be written as

φ =
f(t− r

co
)

r
+
g(t+ r

co
)

r
. (3)

The functions f and g are arbitrary functions of the single variables τ± = t± r
co

, respectively.
They determine the pattern or the phase variation of the wave, while the factor 1/r affects
only the wave magnitude and represents the spreading of the wave energy over larger surface
as it propagates away from the source. The function f(t − r

co
) represents an outwardly

going wave propagating with the speed co. The function g(t + r
co

) represents an inwardly
propagating wave propagating with the speed co.

2 The Pulsating Sphere

Consider a sphere centered at the origin and having a small pulsating motion so that the
equation of its surface is

r = a(t) = a0 + a1(t), (4)

where |a1(t)| << a0. The fluid velocity at the sphere surface is

vr =
dr

dt
= ȧ(t). (5)

At the surface of the sphere

(
∂φ

∂r
)a = ȧ(t). (6)

A Taylor expansion of (6) gives

(
∂φ

∂r
)a = (

∂φ

∂r
)a0 + (a− a0)(

∂2φ

∂r2
)a0 + · · · (7)

If ω and λ are representative of the frequency and wave length associated with the acoustic
wave, then (a−a0)(∂

2φ
∂r2

)a0 ≈ larger{a1ω
c0
ȧ, a1

a0
ȧ}. Hence, if |a1|ω

c0
<< 1, or equivalently a1

λ
<< 1
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, then |(a− a0)(∂
2φ
∂r2

)a0| << |ȧ|. This allows us to linearize the boundary condition along the
sphere by transferring it to the mean position at a0,

(
∂φ

∂r
)a0 = ȧ(t). (8)

The velocity potential can be expressed as in (3). Moreover since the sphere pulsating motion
is the source of acoustic waves, the principle of causality suggests that g ≡ 0. Thus

φ =
f(t− r

co
)

r
. (9)

Applying the condition (8) at the sphere mean location,

∂φ

∂r
= −

f(t− a0
co

)

a2
0

−
ḟ(t− a0

co
)

a0co
= ȧ(t) (10)

Integration of (10) gives

f(t) = −a0co

∫ t

−∞
ȧ(t′ +

a0

c0

)e
− co

a0
(t−t′)

dt′. (11)

Note that if T is a representative period of the sphere pulsation, coT/a0 = λ/a0, where λ is
a representative of the sound wave length. If λ/a0 >> 1, then most of the contribution to
the integral (11) is when t′ ≈ t. Neglecting terms of O(a0/λ), we get

f(t) = −a2
0ȧ(t), (12)

and the acoustic field potential function is given by

φ = −
a2

0ȧ(t− r
co

)

r
. (13)

The expression for the acoustic pressure is

p′ = ρ0a
2
0

ä(t− r
co

)

r
(14)

It is convenient to cast (13,14) in terms of the mass flow rate crossing the sphere of radius
a0, m(t) = 4πρ0a

2
0ȧ. f(t) = − m

4πρ0
and

φ = −
m(t− r

co
)

4πρ0r
, (15)

p′ =
ṁ(t− r

co
)

4πr
, (16)

vr =
1

4πρ0

(
ṁ(t− r

c0
)

rc0

+
m(t− r

c0
)

r2
) (17)

This suggests that in the farfield, i.e., r >> λ, the acoustic pressure and velocity are in
phase and the specific acoustic impedance z = p′/vr = ρ0c0.
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2.1 Harmonic Motion

If we have a harmonic motion
ȧ = v̄e−iωt, (18)

where v̄ is the amplitude of the pulsation velocity and ω its frequency. Substituting (18)
into (11) and carrying out the integration, we get

f(t) = −a0c0v̄
e
−iω(t+

a0
c0

)

c0
a0
− iω

. (19)

The expressions for the potential function, velocity and the pressure can be readily obtained
by substituting (19) into (9),

φ = − m̄

4πρ0r
√

1 + ω̃2
ei(k(r−a0)+ϕ−ωt), (20)

vr =
m̄

4πρ0r
√

1 + ω̃2
(
−ikr + 1

r
) ei(k(r−a0)+ϕ−ωt), (21)

p′ = − iωm̄

4πr
√

1 + ω̃2
ei(k(r−a0)+ϕ−ωt). (22)

where we have introduced ω̃ = ωa0/c0, ϕ = tan−1ω̃, k = ω/c0, and m̄ = 4πa2
0v̄ρ0. Note that

the velocity is the sum of two terms. One terms is in-phase with the pressure and at large
distance decays as 1/r. The other term is out of phase with the pressure and decays at large
distance as 1/r2.

The specific acoustic impedance

z =
p′

vr
= R + iX = ρ0c0

kr

1 + k2r2
(kr − i), (23)

where R is the resistance and X the reactance. In the farfield where r >> λ or, kr >> 1, the
specific acoustic impedance is dominated by R which has the same value as a plane wave,
z = ρ0c0. However, in the near field the reactance |X| is comparable to R for kr = O(1) and
|X| >> R for kr << 1.

The expression for the instantaneous acoustic intensity is given by

I =
|p′|2

R2 +X2

[
Rsin2(k(r − a0) + ϕ− ωt) +

X

2
sin[2(k(r − a0) + ϕ− ωt))]

]
. (24)

Note R/(R2 +X2) = 1/(ρ0c0) and X/(R2 +X2) = −1/(ρ0c0kr), thus (24) simplifies to

I =
|p′|2

ρ0c0

[
sin2(k(r − a0) + ϕ− ωt)− 1

2kr
sin[2(k(r − a0) + ϕ− ωt))]

]
. (25)

The term associated with the reactance X results from coupling the pressure with the out-
of-phase term of the velocity. Its time average is zero and hence it does not contribute to
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the propagation of acoustic energy. Only the term associate with the resistance, which is the
result of coupling the in-phase velocity with the pressure produces radiated acoustic energy.
The average acoustic intensity are,

Ī =
m̄2ω2

32π2ρ0c0(1 + ω̃2)r2
, (26)

P =
m̄2ω2

8πρ0c0(1 + ω̃2)
. (27)

For a sphere of small radius compared to the wave length, i.e., a0 << λ, the acoustic
impedance |z| << ρ0c0 in the near field. Moreover, since R << X, the impedance is
strongly reactive and the surrounding fluid acts mainly as an inertial mass. The velocity
is practically out of phase with the pressure. Thus, a source of small size is an inefficient
radiator of acoustic energy.

3 The Simple Source

The limit of the pulsating sphere solution as the sphere radius a0 becomes very small rep-
resents the simple source or monopole solution. In this case, the source is characterized by
the source mass flow rate

m(t) = 4πa2
0ȧ(t),

and the exact solution is given by (15). If the source is located at the point |~y|, then

φ = −
m(t− r

co
)

4πρ0r
, (28)

where r = |~x − ~y|. Equation (28) states that, at the observation point ~x and time t, the
sound signal received was emitted from the source point ~y at the retarded time τ = t− r

co
.

The velocity and pressure are given by

vr =
∂φ

∂r
=

1

4πρ0

[
ṁ(t− r

c0
)

rc0

+
m(t− r

c0
)

r2

]
(29)

p′ = −ρ0
∂φ

∂t
=
ṁ(t− r

c0
)

4πr
(30)

3.1 Harmonic Sources:

In this case

m = m̄e−iωt (31)

φ = − m̄

4πρ0r
e−iωτ = − m̄

4πρ0r
ei(kr−ωt), (32)
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where m̄ represent the strength of the source and k = ω/c0. Similarly, the the velocity
expression is given by

vr =
∂φ

∂r
=

1

4πρ0

[
ṁ(t)

rc0

+
m(t)

r2

]
eikr (33)

or

vr =
m̄

4πρ0

[−iω
rc0

+
1

r2

]
ei(kr−ωt) (34)

Noting that ω
c0

= 2π
λ

,

vr =
m̄

4πρ0

[−i2π
rλ

+
1

r2

]
ei(kr−t) (35)

p′ = −iωm̄
4πr

ei(kr−ωt). (36)

At large distance, r � λ, the acoustic intensity is given by

I = p′vr =
m̄2ω2

16π2ρoc0r2
sin2(ω(t− r

c0

)) (37)

and

Ī =
1

2
Re(p′v̄r) =

m̄2ω2

32π2ρoc0r2
(38)

P̄ =
m̄2ω2

8ρoπc0

(39)

3.2 Simple source distribution:

Suppose we have N sources located at ~yi with strength mi, then the principle of superposition
states that:

φ =
N∑
i=1

φi = − 1

4π

N∑
i=1

mi(t− ri
c0

)

ri
(40)

where ri = |~x− ~yi|.
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4 The Dipole:

Consider two sources of equal and opposite strength ±m located at ~y ± ~̀/2. The potential
of the two sources is

φ = − 1

4πρ0

[
m(t− r+

c0
)

r+

−
m(t− r−

c0
)

r−
], (41)

where r = |~x− ~y| and r± = |~x− (~y ± ~̀/2)|. We further assume |~̀| � r, then

φ =
1

4πρ0

`i
∂

∂xi

[
m(t− r

c0
)

r

]
+ . . . (42)

or

φ =
1

4πρ0

∇ ·

 ~̀m(t− r
c0

)

r

+ . . . . (43)

The pressure is given by

p′ = − 1

4π
∇ ·

 ~f(t− r
c0

)

r

+ . . . , (44)

or

p′ = − 1

4π

∂

∂xi
(
fi(t− r

c0
)

r
), (45)

where ~f = {fi} = ṁ~̀. Note that ~f has the dimension of a force. The pressure can be more
explicitly expressed as

p′ =
1

4π
[

1

rc0

∂fi(t− r
c0

)

∂t
+
fi(t− r

c0
)

r2
] · (xi − yi)

r
, (46)

We can always assume that dipole is located at a finite distance, i.e., |~y| is finite. The far field
acoustic velocity and pressure are the leading terms of those fields as the observer ~x→∞,

p′ =
1

4πc0|~x|
d~f(t− r

c0
)

dt
· ~x
|~x|
. (47)

or

p′ =
1

4πc0|~x|
df(t− r

c0
)

dt
cosθ, (48)

where θ is the angle between ~f and ~x and f = |~f |. Note that for |~y| << |~x|, r has the
following expansion

r = |~x| − ~y · ~x
|~x|

+O(
1

|~x|
). (49)
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Note that the general expression for the velocity can be obtained by from (43). However,
in the farfield, the acoustic velocity reduces to its radial component, vr, whose expression is
simply given in terms of the acoustic pressure

vr =
p′

ρ0c0

. (50)

The acoustic intensity has the following expression

I = p′v. (51)

The average acoustic intensity is then given by

I =
1

2

p′p′

ρoco.
. (52)

Using (48), we get

I =
ḟ(t− r

c0
)ḟ(t− r

c0
)cos2θ

32π2ρ0c3
0r

2
. (53)

The total power radiated is obtained by integration of a sphere of radius r, this gives

P =
1

24π

ḟ(t− r
c0

)ḟ(t− r
c0

)

ρ0c3
0

. (54)

In many applications, the force representing the dipole is created by the interaction of flow
nonuniformities and turbulence interaction with structural components such as wings, fan
and compressor blades. The fluctuating pressure along the surface of these structure rep-
resent a dipole distribution. The farfield acoustics due to this unsteady pressure can be
calculated by summing the contribution of all the dipoles. As an example, we consider a flat
plate airfoil in a nonuniform flow composed of a uniform flow V in the x1 direction and a
transverse gust disturbance

v = v̄ei(k1x1−ωt), (55)

Where k1 = ω
V

. The surface pressure jump is given by

∆p′s = −2ρ0V
2 v̄

V

√√√√ c
2
− y1

c
2

+ y1

S(ω∗)e−iωt, (56)

where ω∗ = ωc/(2V ) is the reduced frequency and S(ω∗) is the Sears function. The elemen-
tary force applied on the elementary surface dA = dy1dy2 is df = −∆p′sdA. The acoustic
pressure is given by

p′ =
1

4πc0|~x|
2ρ0V

2 v̄

V
S(ω∗)

∫ +b/2

−b/2

∫ +c/2

−c/2

√√√√ c
2
− y1

c
2

+ y1

e
−iω(t− |~x−~y|

c0
)
dy1dy2. (57)
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For simplicity we use the compact source approximation which assumes that the body size
is small compared o the wave length. Here, it implies ω∗ << 1 or c << λ. In this case

f = πρ0cV
2 v

V
S(ω∗)e

iω(
|~x|
c0
−t)
, (58)

is the force per unit span b. Using this expression to calculate P , we get

P = (ρ0c
3
0A)

[
π

6
M6(

v

V
)2(

ωc

2V
)2 b

2

A

]
SS. (59)

5 The Quadrupole:

The concept of a dipole as a combination of two monopoles with equal but opposite strength
can be generalized to define a quadrupole as a combination of two dipoles of equal but
opposite strength separated by ~̀′ = {`′i}. Following the same procedure, we obtain

p′ =
1

4π
`′j

∂2

∂xi∂xj
(
fi(t− r

c0
)

r
). (60)

If we introduce the tensor

Tij = `′jfi. (61)

The expression for the pressure (60) can be cast as

p′ =
1

4π

∂2

∂xi∂xj
(
Tij(t− r

c0
)

r
) (62)

Note Tij has the dimension of a shear × volume. The far field expression for a quadrupole is

p′ =
1

4πrc2
0

T̈ij(t−
r

c0

)
xixj
r2

(63)

If ~̀′ is in the same direction as ~f , the quadrupole is said to be longitudinal, and we have

p′ =
1

4πrc2
0

d2T

dt2
cos2θ, (64)

where T = |~̀′|f . On the other hand, if ~̀′ is normal to ~f , the quadrupole is said to be lateral,
and we have

p′ =
1

4πrc2
0

d2T

dt2
cosθsinθ, (65)
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6 The Green’s Function of the Wave Equation

For Laplace equation, the Green’s function G(~x, ~y) is solution to the inhomogeneous equation

∇2G = −4πδ(~x− ~y).. (66)

Integrate 66 over a sphere centered at ~y of radius r = |~x− ~y|,∫
Σ

∇2G d~x = −4π. (67)

This can be rewritten using the divergence theorem as∫
Σ

∇2G d~x =
∫
Σ

∇G · ~n dΣ =
dG

dr
4πr2 = −4π

which gives the free-space Green’s function for Laplace equation as

G =
1

r
. (68)

The Green’s function G(~x, ~y, t, τ) for the wave equation is solution to(
∇2 − 1

c2
o

∂2

∂t2

)
G = −4πδ(~x− ~y) δ(t− τ). (69)

Because of the spherical symmetry, the general solution to 69 is

G =
f(t− τ − r

co
)

r
., (70)

For the cases where r 6= 0, t 6= τ , the function satisfies(
∇2 − 1

c2
o

∂2

∂t2

)
G = 0.

Near r = 0, (
∇2 − 1

c2
o

∂2

∂t2

)
G ∼ f(t− τ)∇2

(
1

r

)
= −4πδ(~x− ~y) δ(t− τ).

Hence, f(t) = δ(t) and we have the following expression for the Green’s function

G =
δ
(
t− τ − |~x−~y |

co

)
|~x− ~y |

. (71)
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6.1 Harmonic Time-Dependence

For a harmonic time-dependence, we seek solutions of the form

φ(~x, t) = ϕ(~x)e−iωt. (72)

The function ϕ satisfies the Helmholtz equation

(∇2 + k2)ϕ = 0, (73)

where k = ω/c0. The Green’s function for 73 is solution to

(∇2 + k2)g(~x, ~y) = −4πδ(~x− ~y). (74)

It is readily seen that

g(~x, ~y) =
e±ikr

r
. (75)

This can be also obtained by taking the Fourier transform in time of 71 and noting that

e−i(ωt±kr)

r
=

1

r

+∞∫
−∞

δ
(
t− τ ± r

co

)
e−iωτdτ. (76)

7 Distribution of Sources and Forces

The linearized Euler equations for non-viscous non-heat-conducting fluid with no-mean mo-
tion are

ρo
∂

∂t
~v = ~f −∇p′ (77)

∂ρ′

∂t
+∇ · ρo~v = q (78)

where ~f is a force per unit volume and q is a mass flow rate per unit volume.
Combining the two equations gives(

∇2 − 1

c2
o

∂2

∂t2

)
p′ = −∂q

∂t
+∇ · ~f. (79)

In order to find solutions to the acoustic wave equation satisfying 79, we consider the inho-
mogeneous equation (

∇2 − 1

c2
o

∂2

∂t2

)
p′ = −h(~x, t). (80)

Using the Green’s function 71, and noting that

h(~x, t) =
∫
h(~y, τ)δ(~x− ~y)δ(t− τ)d~ydτ, (81)
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we get

p′ =
1

4π

∫ h(~y, t− r
c0

)

r
d~y + p′0, (82)

where p′0 is a solution to the homogeneous equation and accounts for the effects of boundaries.
In what follows we focus on the inhomogeneous solution.

7.1 Source Distribution

In this case h = ∂q
∂t

. Hence, we have

p′ =
1

4π

∫ ∂q
∂t

(~y, t− r
c0

)

r
d~y, (83)

7.1.1 Single Source

For a single source at ~y0, q(~y, t) = m(t)δ(~y − ~y0). Substituting into 83 , we get back the
pressure expression 30 for a single source.

p′ =
ṁ(t− r0

c0
)

4πr0

, (84)

where r0 = |~x− ~y0|.

7.2 Force Distribution

Force a distribution {fi}, we consider the solution to the equation(
∇2 − 1

c2
o

∂2

∂t2

)
ϕi = fi. (85)

This gives

ϕi = − 1

4π

∫ fi(~y, t− r
c0

)

r
d~y. (86)

Taking the divergence of (86), we get

p′ = − 1

4π

∂

∂xi

∫ fi(~y, t− r
c0

)

r
d~y. (87)

A more direct expression for the pressure is given by

p′ =
1

4π

∫
[
∂fi
∂t

(~y, t− r
c0

)

rc0

+
fi(~y, t− r

c0
)

r2
]
(xi − yi)

r
d~y. (88)

The acoustic field is given by

p′ =
1

4πc0

∫
[
∂fi
∂t

(~y, t− r
c0

)

r
]
(xi − yi)

r
d~y. (89)
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7.2.1 Single Force

For a single force at ~y0, fi(~y, t) = Fi(t)δ(~y − ~y0). Substituting into (88) , we get back the
pressure expression (30) for a single source,

p′ =
1

4π
[
dFi

dt
(t− r0

c0
)

r0c0

+
Fi(t− r0

c0
)

r2
0

]
(xi − y0i)

r0

. (90)

The acoustic field is

p′ =
1

4πrc0

dF

dt
(t− r0

c0

)cosθ, (91)

where F is the magnitude of the force F and θ is the angle between F and the observer
direction x. Note that as expected these results are identical to those obtained for a dipole.
This confirms that a dipole represents the field of a force.
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