Acoustic Waves in a Duct

1 One-Dimensional Waves

The one-dimensional wave approximation is valid when the wavelength λ is much larger than the diameter of the duct D ,

$$
\lambda \gg D
$$

The acoustic pressure disturbance p^{\prime} is then governed by

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}-\frac{\partial^{2} p^{\prime}}{\partial x^{2}}=0 \tag{1}
\end{equation*}
$$

where c is the speed of sound. In air at $293^{\circ} \mathrm{K}, \mathrm{c}=343 \mathrm{~m} / \mathrm{s}$. The general solution of (1) is of the form

$$
\begin{equation*}
p^{\prime}(x, t)=f\left(t-\frac{x}{c}\right)+g\left(t+\frac{x}{c}\right) \tag{2}
\end{equation*}
$$

For harmonic waves, the general solution is of the form

$$
\begin{equation*}
p^{\prime}(x, t)=A e^{-i \omega\left(t-\frac{x}{c}\right)}+B e^{-i \omega\left(t+\frac{x}{c}\right)} . \tag{3}
\end{equation*}
$$

In order to determine a particular solution to (1), we need to specify the initial and boundary conditions associated with a real problem. For example, let us consider a piston located at $x=0$ in a semi-infinite duct as shown in Figure 1.

Figure 1: One-Dimensional Wave Propagation in a Duct
At time $t=0$, the piston begins to oscillate about its mean position with a speed $U(t)$. Since the duct extends from 0 to ∞, the physical principle of causality tells us that all waves must propagate from the source of sound outward, i.e., from the piston to the right. This is equivalent to a homogeneous boundary condition imposed at infinity. As a result,

$$
g\left(t+\frac{x}{c}\right) \equiv 0
$$

The fluid velocity u is related to the acoustic pressure p^{\prime} by the momentum equation

$$
\frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p^{\prime}}{\partial x}
$$

This gives

$$
\begin{equation*}
u(x, t)=\frac{p^{\prime}(x, t)}{\rho c}=\frac{1}{\rho c} f\left(t-\frac{x}{c}\right) \tag{4}
\end{equation*}
$$

We now apply the boundary condition at $x=0$,

$$
u(t, 0)=U(t)=\frac{1}{\rho_{o} c} f(t) \text { for } t \geq 0
$$

and solving for f gives

$$
f\left(t-\frac{x}{c}\right)=\rho c U\left(t-\frac{x}{c}\right) \text { for } t \geq \frac{x}{c} .
$$

Note that the initial condition $u(0, x)=0$ for $x>0$ implies that the sound produced by the oscillation of the piston will not reach locations $x>c t$. This is equivalent to taking $U(t) \equiv 0$ for $t<0$.
Substituting the expression of f into Equation (4) gives

$$
p^{\prime}=\rho c U\left(t-\frac{x}{c}\right)
$$

Note that if the piston has been oscillating for a very long time, we can take the initial time at $-\infty$ instead of 0 . In this case $U(t)$ can be defined for all t . This is the case for harmonic oscillations where $U(t)=A e^{-i \omega t}$. The solution takes the form

$$
p^{\prime}=A \rho c e^{-i \omega\left(t-\frac{x}{c}\right)},
$$

where A is the wave amplitude. Such a wave is called a plane wave since its phase is constant in a plane perpendicular to the x -axis. The physical solution is the real part (or the imaginary part) of this solution,

$$
\begin{equation*}
p^{\prime}=A \rho c \cos \left[\omega\left(t-\frac{x}{c}\right)\right] \tag{5}
\end{equation*}
$$

Note that $v=p^{\prime} /(\rho c)$. The acoustic intensity

$$
\begin{equation*}
I=p^{\prime} v=A^{2} \rho c \cos ^{2}\left[\omega\left(t-\frac{x}{c} c\right)\right] \tag{6}
\end{equation*}
$$

The average intensity \bar{I} and acoustic power \mathcal{P} can then readily calculated

$$
\begin{align*}
\bar{I} & =\frac{1}{2} A^{2} \rho c \tag{7}\\
\mathcal{P} & =\frac{1}{2} A^{2} \rho c S \tag{8}
\end{align*}
$$

where S is the duct cross section.

The following parameters are usually used to describe harmonic waves.

$$
\begin{array}{rlrl}
\text { Circular Frequency: } & \omega & =2 \pi f & \text { [Radians per second] } \\
\text { Frequency: } & f & =\frac{\omega}{2 \pi} \quad \text { [Hertz=cycles per second] } \\
\text { Period: } & T & =\frac{1}{f}=\frac{2 \pi}{\omega} \quad \text { [Seconds] } \\
\text { Wavelength: } & \lambda & =\frac{2 \pi c}{\omega} \\
\text { Wave Number: } & k & =\frac{\omega}{c}=\frac{2 \pi}{\lambda} \\
\text { Phase Speed: } & c & =\frac{\omega}{k} . \tag{14}
\end{array}
$$

2 Rectangular Duct with Rigid Boundaries

Figure 2: Wave Propagation in a Rectangular Duct
A schematic of the duct is shown in Figure 2. The governing equation for the acoustic pressure is similar to that of the one-dimensional case,

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}-\nabla^{2} p^{\prime}=0 \tag{16}
\end{equation*}
$$

The rigid walls assumption gives the boundary condition $\frac{\partial p^{\prime}}{\partial n}=0$. We use the method of separation of variables to find a time-harmonic solution to this problem. Thus we assume a solution of the form

$$
\begin{equation*}
p^{\prime}(\vec{x}, t)=f\left(x_{1}\right) g\left(x_{2}\right) h\left(x_{3}\right) T(t) \tag{17}
\end{equation*}
$$

Substituting (17) into (16) gives

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}-\frac{f^{\prime \prime}}{f}-\frac{g^{\prime \prime}}{g}-\frac{h^{\prime \prime}}{h}=0 \tag{18}
\end{equation*}
$$

If the oscillation frequency is ω, then

$$
\frac{T^{\prime \prime}}{T}=-\omega^{2} \quad \Longrightarrow \quad T(t)=e^{i \omega t}
$$

We could have considered a solution of the form $e^{-i \omega t}$. This would give the complex conjugate of the solution obtained with $e^{i \omega t}$. This, however, does not affect the physical solution which is the real part of the mathematical solution.

Substituting the expression for T into (18) gives

$$
\frac{f^{\prime \prime}}{f}+\frac{g^{\prime \prime}}{g}+\frac{h^{\prime \prime}}{h}=-\frac{\omega^{2}}{c^{2}}
$$

If we assign $\frac{g^{\prime \prime}}{g}$ and $\frac{h^{\prime \prime}}{h}$ to be constant, we obtain

$$
\begin{array}{lll}
\frac{g^{\prime \prime}}{g}=-\alpha^{2} & \Longrightarrow & g\left(x_{2}\right)=A_{1} \cos \left(\alpha x_{2}\right)+B_{1} \sin \left(\alpha x_{2}\right) \\
\frac{h^{\prime \prime}}{h}=-\beta^{2} & \Longrightarrow & h\left(x_{3}\right)=C_{1} \cos \left(\beta x_{3}\right)+D_{1} \sin \left(\beta x_{3}\right)
\end{array}
$$

Applying the boundary condition at $x_{2}=\{0, a\}$ and $x_{3}=\{0, b\}$ gives:

$$
\begin{aligned}
B_{1}=0, & \alpha a=m \pi, \\
D_{1}=0, & \beta b=n \pi,
\end{aligned}
$$

and

$$
g\left(x_{2}\right)=A_{1} \cos \left(\frac{m \pi}{a} x_{2}\right), \quad h\left(x_{3}\right)=C_{1} \cos \left(\frac{n \pi}{b} x_{3}\right),
$$

where m and n are integers. Finally, we have

$$
\frac{f^{\prime \prime}}{f}=-\frac{\omega^{2}}{c^{2}}+\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}
$$

giving,

$$
f\left(x_{1}\right)=E_{1} e^{-i k_{m n} x_{1}}+F_{1} e^{i k_{m n} x_{1}}
$$

where $k_{m n}$ is defined as

$$
k_{m n}^{2}=\frac{\omega^{2}}{c^{2}}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}
$$

Since we have assumed $\omega>o$, and we are considering acoustic waves propagating to the right, if we take

$$
\begin{equation*}
k_{m n}=\sqrt{\frac{\omega^{2}}{c^{2}}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}} \tag{19}
\end{equation*}
$$

then $E_{1}=0$. Equation (19) which gives the wave number $k_{m n}$ in terms of the frequency ω is known as the dispersion equation. From the solutions for T, f, g, and h, and taking $F_{1}=1$, we have the solution

$$
\begin{equation*}
p_{m n}^{\prime}(\vec{x}, t)=\cos \left(\frac{m \pi x_{2}}{a}\right) \cos \left(\frac{n \pi x_{3}}{b}\right) e^{i\left(k_{m n} x_{1}-\omega t\right)} \tag{20}
\end{equation*}
$$

$p_{m n}^{\prime}$ is referred to as the (m, n) mode. The velocity in the x_{1} direction is

$$
\begin{equation*}
v_{1 m n}=\frac{p_{m n}^{\prime}}{Z_{m n}} \tag{21}
\end{equation*}
$$

where the impedance

$$
\begin{equation*}
Z_{m n}=\frac{\rho c}{\sqrt{1-\left(\frac{m \pi c}{a \omega}\right)^{2}-\left(\frac{n \pi c}{b \omega}\right)^{2}}} \tag{22}
\end{equation*}
$$

The general solution is of the form

$$
\begin{equation*}
p^{\prime}(\vec{x}, t)=\sum_{m=0}^{m=\infty} \sum_{n=0}^{n=\infty} a_{m n} p_{m n}^{\prime}(\vec{x}, t) \tag{23}
\end{equation*}
$$

where $a_{m n}$ are constants to be determined from the boundary conditions at $x_{1}=0$. If for example the acoustic waves are caused by the oscillations of a membrane described by $U_{1}\left(x_{2}, x_{3}\right) \exp (-i \omega t)$, with the following Fourier ewxpansion

$$
\begin{equation*}
U_{1}\left(x_{2}, x_{3}\right)=\sum_{m=0}^{m=\infty} \sum_{n=0}^{n=\infty} b_{m n} \cos \left(\frac{m \pi x_{2}}{a}\right) \cos \left(\frac{n \pi x_{3}}{b}\right), \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{m n}=b_{m n} Z_{m n} \tag{25}
\end{equation*}
$$

When

$$
\omega<c\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]
$$

$k_{m n}$ is purely imaginary and the amplitude of the wave would either increase or decrease exponentially. Since growing waves are unacceptable physically, the waves will decay exponentially. These waves are called evanescent waves. As ω increases a new $\{m, n\}$ mode begins to propagate or is said to cut on. Thus at a given frequency ω, once the transients represented by the evanescent modes decay, the solution will have only a finite number of propagating modes.
Note that the dispersion equation is not linear, i.e., $k_{m n}$ is not a linear function of ω. The axial phase speed, $c_{p}=\frac{\omega}{k_{m n}}>c$ and depends on ω. Waves with different frequencies have different phase speeds and as a result the waves disperse as they propagate. Such waves are called dispersive waves. The energy of dispersive waves propagate with the group velocity c_{g} defined as

$$
c_{g}=\frac{d \omega}{d k}=c^{2} \frac{k_{m n}}{\omega}=\frac{c^{2}}{c_{p}}<c
$$

If we assume for simplicity that $a=b$. Then

$$
\begin{equation*}
k_{m n}=\sqrt{\frac{\omega^{2}}{c^{2}}-\frac{\pi^{2}}{a^{2}}\left(m^{2}+n^{2}\right)} \tag{26}
\end{equation*}
$$

Only waves where $\omega>\pi \frac{c}{a}\left(m^{2}+n^{2}\right)^{\frac{1}{2}}$ will propagate. Introducing the wave length $\lambda=\frac{2 \pi c}{\omega}$, gives the following condition for a wave to propagate,

$$
a>\frac{\lambda}{2}\left(m^{2}+n^{2}\right)^{\frac{1}{2}}
$$

If $a<\frac{\lambda}{2}$, only the $(0,0)$ mode corresponding to a plane wave propagates in the duct. The higher order modes $(m>0, n>0)$ are cut-off. Thus if the duct diameter is much smaller than the wavelength the problem is reduced to that of the one-dimensional wave approximation. This result justifies the one-dimensional approximation for ducts with a diameter small compared to the wavelength.

