Bandwidth Filters

Instruments used to analyze noise have either constant bandwidth or proportional bandwidth devices.

The constant bandwidth is essentially a tunable narrow band filter with constant bandwidth, $w = f_u - f_\ell$, where f_u and f_ℓ are the upper and lower half-power frequencies. The center frequency of the filter, defined in general as

$$f_c = \sqrt{f_u f_\ell} \tag{1}$$

is usually variable so that the filter can be swept over the desired frequency range. Bandwidths range from a few tens of a hertz to less than a few hundredths of a hertz.

The proportional bandwidth instrument consists of a series of relatively broadband filters with upper and lower half-power frequencies satisfying the relationship $f_u/f_\ell = \text{constant}$. Each bandwidth, being proportional to the center frequency, increases with increasing frequencies with contiguous bands. Common instruments of this type are the *octave-band* filter with $f_u/f_\ell = 2$, the 1/3-octave-band filter with $f_u/f_\ell = 2^{1/3}$, and the 1/10-octave-band filter with $f_u/f_\ell = 2^{1/10}$.

As an example, let us derive the 1/3-octave-band filter width in terms of the center frequency.

$$w = (\sqrt{2^{\frac{1}{3}}} - \frac{1}{\sqrt{2^{\frac{1}{3}}}})f_c, \tag{2}$$

which gives

$$w = 0.232 f_c.$$
 (3)

In many problems, we deal with the power spectral density normalized with respect to $\omega = 2\pi f_c$. In this case,

$$\Delta\omega = 0.232(2\pi)f_c = 0.232\omega_c.$$
 (4)

In decibels, this implies that we add

$$10log_{10}\omega_c - 6.353.$$

Table 2-1 Center, lower, and upper frequencies for $\frac{1}{3}$ -octave bands

Band no.	Frequency, Hz		
	Center	Lower	Upper
12	16†	14.0	18.0
13	20	18.0	22.4†
14	25	22.4†	28.0
15	31.5†	28.0	35.5
16	40	35.5	45†
17	50	45†	56
18	63†	56	71
19	80	71	90†
20	100	90†	112
21	125†	112	140
22	160	140	180†
23	200	180†	224
24	250†	224	280
25	315	280	355†
26	400	355†	450
27	500†	450	560
28	630	560	710†
29	800	710†	900
30	1,000†	900	1,120
31	1,250	1,120	1,400†
32	1,600	1,400†	1,800
33	2,000†	1,800	2,240
34	2,500	2,240	2,800†
35	3,150	2,800†	3,550
36	4,000†	3,550	4,500
37	5,000	4,500	5,600†
38	6,300	5,600†	7,100
39	8,000†	7,100	9,000
40	10,000	9,000	11,200†
41	12,500	11,200†	14,000
42	16,000†	14,000	18,000
43	20,000	18,000	22,400†
44	25,000	22,400†	28,000
45	31,500†	28,000	35,500