Bandwidth Filters

Instruments used to analyze noise have either constant bandwidth or proportional bandwidth devices.

The constant bandwidth is essentially a tunable narrow band filter with constant bandwidth, $w=f_{u}-f_{\ell}$, where f_{u} and f_{ℓ} are the upper and lower half-power frequencies. The center frequency of the filter, defined in general as

$$
\begin{equation*}
f_{c}=\sqrt{f_{u} f_{\ell}} \tag{1}
\end{equation*}
$$

is usually variable so that the filter can be swept over the desired frequency range. Bandwidths range from a few tens of a hertz to less than a few hundredths of a hertz.

The proportional bandwidth instrument consists of a series of relatively broadband filters with upper and lower half-power frequencies satisfying the relationship $f_{u} / f_{\ell}=$ constant. Each bandwidth, being proportional to the center frequency, increases with increasing frequencies with contiguous bands. Common instruments of this type are the octave-band filter with $f_{u} / f_{\ell}=2$, the $1 / 3$-octave-band filter with $f_{u} / f_{\ell}=2^{1 / 3}$, and the $1 / 10$-octave-band filter with $f_{u} / f_{\ell}=2^{1 / 10}$.

As an example, let us derive the $1 / 3$-octave-band filter width in terms of the center frequency.

$$
\begin{equation*}
w=\left(\sqrt{2^{\frac{1}{3}}}-\frac{1}{\sqrt{2^{\frac{1}{3}}}}\right) f_{c}, \tag{2}
\end{equation*}
$$

which gives

$$
\begin{equation*}
w=0.232 f_{c} . \tag{3}
\end{equation*}
$$

In many problems, we deal with the power spectral density normalized with respect to $\omega=2 \pi f_{c}$. In this case,

$$
\begin{equation*}
\Delta \omega=0.232(2 \pi) f_{c}=0.232 \omega_{c} \tag{4}
\end{equation*}
$$

In decibels, this implies that we add

$$
10 \log _{10} \omega_{c}-6.353
$$

Table 2-1 Center, lower, and upper frequencies for $\frac{1}{3}$-octave bands

Band no.	Frequency, Hz		
	Center	Lower	Upper
12	$16{ }^{+}$	14.0	18.0
13	20	18.0	$22.4 \dagger$
14	25	$22.4 \dagger$	28.0
15	$31.5 \dagger$	28.0	35.5
16	40	35.5	$45 \dagger$
17	50	$45 \dagger$	56
18	63†	56	71
19	80	71	$90 \dagger$
20	100	90 \dagger	112
21	$125 \dagger$	112	140
22	160	140	$180 \dagger$
23	200	$180 \dagger$	224
24	$250 \dagger$	224	280
25	315	280	$355 \dagger$
26	400	$355 \dagger$	450
27	$500 \dagger$	450	560
28	630	560	$710 \dagger$
29	800	$710 \dagger$	900
30	1,000 \dagger	900	1,120
31	1,250	1,120	1,400 \dagger
32	1,600	1,400 \dagger	1,800
33	2,000 \dagger	1,800	2,240
34	2,500	2,240	2,800 \dagger
35	3,150	2,800 \dagger	3,550
36	4,000 \dagger	3,550	4,500
37	5,000	4,500	5,600 \dagger
38	6,300	5,600†	7,100
39	8,000 \dagger	7,100	9,000
40	10,000	9,000	$11.200 \dagger$
41	12,500	11,200 \dagger	14,000
42	16,000 ${ }^{+}$	14,000	18,000
43	20,000	18,000	22,400 \dagger
44	25,000	22,400 \dagger	28,000
45	31,500 \dagger	28,000	35,500

