
Fundamentals of Fan 
Aeroacoustics



Overview of Lecture

• Noise Sources and Generation Mechanisms
– Sources of Noise for Typical Fans
– Fluid-Structure Interaction as a Noise Generation Mechanism
– Coupling to the Duct: Propagating Modes and Cut-off Phenomena

• Modeling of Fan Noise
The Acoustic Analogy
Computational Methods:Aeroacoustics and UnsteadyAerodynamics
The Linear Cascade Model
Effects of  Geometry and Blade Loading on Acoustic Radiation

• Recent Developments in Fan Modeling
– Tonal and Broadband Noise
– Nonuniform Mean Flow Effects:swirl     
– Three-Dimensional Effects
– High Frequency Effects

• Conclusions



Dominant Noise Sources for Turbofan Engines



High Bypass Ratio Fan Flyover Noise 
Maximum Perceived Noise Level

Approach Takeoff



Typical Turbomachinery Sound Power Spectra

Subsonic Tip Speed Supersonic Tip Speed



Turbomachinery Noise Generation Process



Rotor-Stator Interaction 



Fluid-Structure Interaction as a 
Noise Generation Mechanism

• The interaction of nonuniform flows with structural components such as 
blades and guide vanes produce fluctuating aerodynamic forces on the blades 
and radiates sound in the farfield. 

• Noise Sources: Flow Nonuniformities: Inlet Turbulence, Boundary Layers, 
Tip and Hub Vortices,Wakes etc.

• Mechanism: Interaction with Rotating Components (rotor noise), Scattering by 
Sharp Edges (trailing edge noise), Impingement of Unsteady Nonuniformities
on Guide Vanes (rotor/stator interaction).

• Propagation in the Duct: Sound Must Propagate in a Duct: therefore only high 
frequency acoustic modes will propagate. 



Rotor Wake Phenomena



Rotor Wakes Interaction with Downstream Stator



Rotor-Stator Interaction
Wakes and Tip Vortices



Scaling Analysis

• Multiple length scales:
– Duct hub and tip Radii: Rh, Rt,  Rotor/stator spacing: L
– Chord length c,  Blade spacing s=2pR/(B or V)
– Turbulence Integral Scale = Λ << c <<R

• Multiple Frequency Parameters:

• Fast Variables:

• Slow Variables:
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Multiple Pure Tones



Airfoil in Nonuniform Flow



Equations of Classical Acoustics
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Acoustic Intensity and Energy

• Fundamental Conservation Equation
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Fundamental Solution of the wave Equation

• Spherical symmetry:

• Green’s Function

t-R/c: retarded time
• Compact/Noncompact
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Causality determines the sign: Sound 
must propagate away from the source



Plane Waves
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Elementary Solutions of the Wave Equation
No Flow

Noise Source Acoustic Pressure Acoustic Intensity Directivity

Point Source Sperical symmetry

Dipole: Force

Quadrupole: Stress
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Directivity of Elementary Sources of sound

Monopole Directivity Dipole Directivity Quadrupole Directivity



Scaling of  of Acoustic Power Radiated for  
Aerodynamic Applications at Low Mach Number

Source Scaling Ratio

Dipole 1

Quadrupole 2M

6M
8M

Thus at low Mach number dipoles or forces are more efficient sources of noise than 
quadrupoles or turbulence. However, this result is valid only for uniform flows and low 
frequency. 



Vortex in a Strongly Nonuniform Flow at Low 
Mach Number

As the vortex travels near the trailing edge it is no longer convected by the 
mean flow. Its trajectory crosses the undisturbed mean flow. This increases 
the amount of fluid energy converted into acoustic energy. The acoustic 
power scales with M3, much higher than that predicted by a dipole (M6).



Acoustic Waves in Ducts
Square Duct

• Higher order modes

• Dispersion Relation

• Propagating or Cut-on Modes
– kmn:real
Evanescent Modes
– kmn: imaginary
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The velocity and pressure of 
evanescent or cut-off modes are 
out of phase and there is  no net 
transport of energy (I=0).



Phase and Group Velocities for
Dispersive Waves

• Phase Velocity

– Phase velocity is larger 
than the speed of 
sound

• Group Velocity

– Group velocity is the 
velocity at which 
acoustic energy is 
transported in the duct. 
It is smaller than the 
speed of sound.
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Higher Acoustic Modes in a Duct

• Reflecting wave components making up the first higher mode 
propagating between two parallel plates. Solid lines represent 
pressure maxima of the wave; dotted lines, pressure minima. 
Arrows, representing direction of propagation of the components,
are normal to the wavefronts.



Application to Rotor/Stator Interaction
The Tylor-Sofrin Modes

• Incident Gust 

– Interblade phase angle

• Cut-on Modes

m=m′-qV

• For rotor/stator interaction with B rotor blades and V guide vanes 
m ′ =pB,

• Hence
– The circumferential modal number m for propagating modes for a rotor with B blades and a 

stator with V blades is given by
m=pB-kV

Example: B=18, V=40. m=-22, -4, 10, 14, 22
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• The governing equation

• With the boundary condition  at the hub and the tip 

• The eigenvalues are given by,

Where

• The solution is given by

Sound Propagation in a Duct with Uniform Flow
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Conclusions

• Fan noise sources: Flow nonuniformities and 
irregular flow pattern.

• Mechanism: Fluid/structure interaction and link to 
unsteady aerodynamics.

• Classical acoustics concepts are essential to 
understanding and modeling of noise.

• The coupling to the duct determines the modal 
content of the scattered sound and affects sound 
propagation.  





Modeling of Fan Noise

• The Acoustic Analogy
• Computational Methods:Aeroacoustics 

and Unsteady Aerodynamics
• The Linear Cascade Model
• Effects of  Geometry and Blade Loading 

on Acoustic Radiation



Lighthill’s Acoustic Analogy

• Inhomogeneous wave equation

• Lighthill’s stress tensor

• For a Uniform Mean Flow
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Aeroacoustics and Unsteady Aerodynamics

• Sound is the far-field signature of the unsteady flow.
• Unsteady aerodynamics has been developed for aeroelastic problems 

such as flutter and forced vibrations where the main interest is to 
determine the near-field body surface forces.

• The aeroacoustic  problem is similar to that of forced vibration but 
with emphasis on the far-field. It is a much more difficult 
computational problem whose outcome depends on preserving the far-
field wave form with minimum dispersion and dissipation. 

• Inflow/outflow nonreflecting boundary conditions must be derived to 
complete the mathematical formulation as a substitute for physical 
causality.



Airfoil in Nonuniform Flow



Disturbaces in Uniform Flows

Splitting Theorem:
The flow disturbances can be split into distinct potential(acoustic), 
vortical and entropic modes obeying three independent equation.

– The vortical velocity is solenoidal, purely convected and 
completely decoupled from the pressure fluctuations.

– The potential (acoustic) velocity is directly related to the pressure 
fluctuations. 

– The entropy is purely convected and only affects the density 
through the equation of state.

– Coupling between the vortical and potential velocity occurs 
only along the body surface.

– Upstream conditions can be specified independently for various 
disturbances.



Splitting of the Velocity into Acoustic, 
Entropic and Vortical Modes
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Equations for Linear Aerodynamics

• Vortical Mode:
• Harmonic Component

• Potential Mode:

• Boundary Conditions: impermeability along blade surface, Kutta 
condition at trailing edge, allow for wake shedding in response to gust.
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Flat Plate in a Gust
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Transverse Gust: (0,a2,0), (k1,0,0)

Oblique Gust:(0,a2,0), (k1,0,k3)



Vector Diagram Showing the Real and Imaginary Parts of the Response 
Function S(k1,0,M) versus k1 for a Transverse Gust at Various M



Vector Diagram Showing the Real and Imaginary Parts of the Response 
Function S(k1,k3,0.8) versus k1 for a Transverse Gust at Various M



Airfoil in Three-Dimensional Gust





Vector Diagram Showing the Real and Imaginary Parts 
of the Response Function S(k1,k2,k3) versus k1 for an 

Airfoil in an Oblique Gust (k2=k1) at Various k3.



Acoustic Directivity for a 3% Thick Airfoil in a 
Transverse Gust at M=0.1, k1=1.0

-.-, direct calculation from Scott-Atassi’s code;     , Kirchhoff’s 
method;---, flat plate semi-analytical results.



Acoustic Pressure Directivity for a Symmetric Airfoil in a 
Two-Dimensional  Gust

Thichness Ratio=0.06, M=0.7, k1=3.0 
k2:  solid line,0.0; ------,3.0.

Total Acoustic PressureDipole Acoustic Pressure



Total Acoustic PressureDipole Acoustic Pressure

Acoustic Pressure Directivity for a Lifting Airfoil
in a transverse Gust

Thichness Ratio=0.12, M=0.5, k1=2.5
Camber: solid line,0.0; ------,0.2; -- . --, 0.4.



Conclusions

• At low Mach number, low frequency, dipole effects 
(unsteady airfoil pressure) dominate the scattered sound.

• At moderate and high Mach number and/or high 
frequency, the scattered sound strongly depends on both 
dipole and  quadrupole effects and sound  directivity is 
characterized by lobe formation.

• Loading strongly affects the scattered acoustic energy.
• Exact nonreflecting boundary conditions are essential for 

obtaining accurate results particularly at high Mach 
number and reduced frequency.



The Linear Cascade Model

• Separate rotor and stator and consider each  blade row 
separately.

• Unroll the annular cacade into a linear cascade of infinite blade 
to preserve periodicity.

• Flat-plate cascade: uniform mean flow, integral equation 
formulation in terms of plane waves. The current benchmark.

• Loaded cascade: Linearized Euler about a computationally 
calculated mean flow, requires field solutions of pde. 
CASGUST and LINFLOW are current benchmarks.



Unrolling of the Annular Cascade
The Linear Cascade



Linear Cascade and Strip Theory



Cascade of Airfoils in a Three-Dimensional Gust











Magnitude of the Response Function S versus k1 for an 
EGV Cascade(squares) with Flat-Plate Cascade(circles). 

M=0.3, k2=k1



Magnitude of the Downstream Acoustic Modes fro an EGV 
Cascade with Those of a Flat Plate Cascade(solid)

M=0.3, k2=k1



How Good is the Linearized Euler Model?



Cascade Flow with local Regions of Strong Interaction







Magnitude (a) and Phase (b) of the first Harmonic Unsteady Pressure 
Difference Distribution for the subsonic NACA 0006 Cascade Underhoing

an In-Phase Torsional Oscillation of Amplitude a=2o at k1=0.5 about 

Midchord; M=0.7; ,Linearized Analysis; ….Nonlinear Analysis.



Magnitude (a) and Phase (b) of the first Harmonic Unsteady Pressure 
Difference Distribution for the subsonic NACA 0006 Cascade Underhoing

an In-Phase Torsional Oscillation of Amplitude a=2o at k1=0.5 about 
Midchord; M=0.7.



Conclusions

• Cascade effects such as blade interference which depends on the 
spacing ratio, and stagger have strong influence on the aerodynamic 
and acoustic cascade response, particularly at low frequency.

• At high frequency the cascade response is dominated by the acoustic 
modes cut-on phenomena.

• For thin blades, the leading edge dominates the aerodynamic pressure 
and noise generation. 

• For loaded blades at high Mach number, large unsteady pressure 
excitations spread along the blade surface with concentration near the 
zone of transonic velocity.

• Blade loading changes the upstream and downstream flows and thus
affects the number and intensity of the scattered sound.



Recent Developments in Fan Modeling

• Tonal and Broadband Noise
• Nonuniform Mean Flow Effects :swirl
• Three-Dimensional Effects
• High Frequency Effects



Tonal and Broadband

• Turbulence modeling using the rapid 
distortion theory.

• Hanson (Pratt & Whitney), Glegg (Florida) 
developed models using linear flat-plate 
cascades. 

• Effects of blade loading, 3D effects are 
under development at ND



Turbulence Representation

• Fourier representation:

• Evolution of each Fourier component

• Velocity covariance

• One-dimensional energy spectrum
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Aerodynamic and Acoustic Blade Response

Swirling Mean 
flow +

disturbance

Normal mode analysis
“construction of nonreflecting

boundary conditions”

Linearized Euler model

Rapid distortion theory
“disturbance propagation”

Blade unsteady
loading & radiated 

sound field

Source term
on blades

Non-reflecting
boundary
conditions



Mathematical Formulation

• Linearized Euler equations
• Axisymmetric swirling mean flow

• Mean flow is obtained from data or computation
• For analysis the swirl velocity is taken

• The stagnation enthalpy, entropy, velocity and vorticity 
are related by Crocco’s equation
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Normal Mode Analysis

• A normal mode analysis of linearized Euler equations 
is carried out assuming solutions of the form

•
• A combination of spectral and shooting methods is 

used in solving this problem
– Spectral method produces spurious acoustic modes
– Shooting method is used to eliminate the spurious 

modes and to increase the accuracy of the acoustic 
modes
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Mode Spectrum
Spectral and Shooting Methods

Mx=0.55, MΓ=0.24, MΩ=0.21, ω=16, and m=-1



Pressure Content of Acoustic 
and Vortical Modes

Mx=0.5, MΓ=0.2, MΩ=0.2, ω=2π, and m=-1



Effect of Swirl on Eigenmode Distribution
Mxm=0.56, MΓ=0.25, MΩ=0.21



Summary of Normal Mode Analysis

Pressure-Dominated
Acoustic Modes

Vorticity-Dominated
Nearly-Convected Modes

Propagating Decaying
Singular Behavior

Normal Modes

Nonreflecting 
Boundary Conditions



Nonreflecting Boundary Conditions
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Quieting the skies: engine noise reduction for subsonic aircraft
Advanced subsonic technology program. NASA Lewis research center, Cleveland, Ohio

• Accurate nonreflecting boundary conditions are necessary for 
computational aeroacoustics



Formulation

• Only outgoing modes are 
used in the expansion. 

• Group velocity is used to 
determine outgoing modes.
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Causality

• Presssure at the boundaries is expanded in terms of the 
acoustic eigenmodes.



Nonreflecting Boundary Conditions (Cont.)
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Rotor/Stator Interaction

The rotor/stator system is 
decoupled

The upstream disturbance can be 
written in the form,

Quasi-periodic conditions

Wake discontinuity

Nonreflecting conditions
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Numerical Formulation

The rotor/stator system is 
decoupled

The upstream disturbance can be 
written in the form,

Quasi-periodic conditions

Wake discontinuity

Nonreflecting conditions
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Domain Decomposition
Inner and Outer Regions

Vorticity and Pressure
Are uncoupled.

Vorticity and Pressure are Coupled.
Solution is Simplified by Removing Phase.

O(R) O(c)



Scattering Results



Parameters for Swirling Flow Test Problem

Narrow Annulus Full Annulus Data
rtip/rhub 1.0/0.98 rtip/rhub 1.0/0.7

5
M (mach number) 0.5

α (disturbance) 0.1
B (rotor blades) 16

C (chord) 2π/V
Stagger 45o

V (stator blades) 24

L (length) 3c

ω 0.5π,1.0
π
1.5π,2.0
π
2.5π,3.0
π
3.5π,4.0
π

ω 3.0π



Computational Domain

B (rotor blades) 16
V (stator blades) 24
C (chord) 2π/

V
L (length) 3c
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Narrow Annulus Limit

rtip/rhub 1.0/0.98
ω 1.5π, 4.5π, 6.5π
M 0.5
Stagger 45



Narrow Annulus Limit



Gust Response for Narrow Annulus Limit –Comparison 
with 2D cascade 

Unsteady Lift Coefficient Acoustic Coefficients
m=-8, n=0,1

Mo=0.3536, Mθ=0.3536, B=16, V=24, ar =0



Gust Response Effect of Hub-Tip Ratio

Unsteady Lift Coefficient Acoustic Coefficients
m=-8, n=0,1

Mo=0.3536, MΓ=0.1, MΩ=0.1, ω=3π, and ar =0



Mean Flow Cases

Mean Flow 1:  Mo=0.4062, MΓ=0., MΩ=0.    
Mean Flow 2:  Mo=0.3536, MΓ=0.2, MΩ=0.  
Mean Flow 3:  Mo=0.3536, MΓ=0., MΩ=0.2  
Mean Flow 4:  Mo=0.3536, MΓ=0.1, MΩ=0.1



Effect of Mean Flow

Unsteady Lift Coefficient Acoustic Coefficients

rh\rt=0.6, ω=3π, and ar =0

Mode m=-8
Mean 
Flow  1

Mean 
Flow  2

Mean 
Flow 3

Mean 
flow 4

Downstream 
n=0 

0.2015 0.1610 0.1375 0.1349

Downstream 
n=1

Cut off 0.0787 0.2140 0.1698

Upstream 
n=0

0.1363 0.0143 0.0313 0.0195

Upstream 
n=1

Cut off 0.0370 0.0763 0.0586



Effect of Frequency
Mean Flow 4

Unsteady Lift Coefficient

Mo=0.3536, MΓ=0.1, MΩ=0.1, rh / rt =0.6667, and ar =0

Acoustic Coefficients

m=-8, n=0,1



Effect of the Upstream Disturbance radial 
component 

Unsteady Lift Coefficient Acoustic Coefficients

Mo=0.3536, MΓ=0.1, MΩ=0.1, rh / rt =0.6667, and ω=3π

Mode m=-8
2-D 

Disturbance
3-D 

Disturbance

Downstream 
n=0 

0.1471 0.1094

Downstream 
n=1

0.0908 0.0617

Upstream 
n=0

0.0185 0.0143

Upstream 
n=1

0.0498 0.0418



Scattering of Acoustic versus Vortical 
Disturbance 

Unsteady Lift Coefficient Acoustic Coefficients

Mo=0.3536, MΓ=0.1, MΩ=0.1, rh / rt =0.6667, and ω=3π

Mode m=-8
Vortical 

Disturbance
Acoustic 

Disturbance

Downstream 
n=0 

0.1471 0.8608

Downstream 
n=1

0.0908 0.1458

Upstream 
n=0

0.0185 0.0718

Upstream 
n=1

0.0498 0.0775



Comparison of Successive Iterations



Three-Dimensional Effects
Comparison With Strip Theory



Effect of Swirl



Effect of Blade Twist



Conclusions

• Swirl affects the impedance of the duct and the number of 
cut-on acoustic modes. The spinning modes are not 
symmetric.

• Strip theory gives good approximation as long as there is 
no acoustic propagation. 

• Resonant conditions in strip theory are much more 
pronounced than for 3D, i.e., lift variation in 3D is much 
smoother along span.

• Discrepancies between strip theory and 3D calculations 
increase with the reduced frequency: it is a high frequency 
phenomenon.
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